@inproceedings{ramesh-etal-2024-gpt,
title = "{GPT}-4 Jailbreaks Itself with Near-Perfect Success Using Self-Explanation",
author = "Ramesh, Govind and
Dou, Yao and
Xu, Wei",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.1235",
pages = "22139--22148",
abstract = "Research on jailbreaking has been valuable for testing and understanding the safety and security issues of large language models (LLMs). In this paper, we introduce Iterative Refinement Induced Self-Jailbreak (IRIS), a novel approach that leverages the reflective capabilities of LLMs for jailbreaking with only black-box access. Unlike previous methods, IRIS simplifies the jailbreaking process by using a single model as both the attacker and target. This method first iteratively refines adversarial prompts through self-explanation, which is crucial for ensuring that even well-aligned LLMs obey adversarial instructions. IRIS then rates and enhances the output given the refined prompt to increase its harmfulness. We find that IRIS achieves jailbreak success rates of 98{\%} on GPT-4, 92{\%} on GPT-4 Turbo, and 94{\%} on Llama-3.1-70B in under 7 queries. It significantly outperforms prior approaches in automatic, black-box, and interpretable jailbreaking, while requiring substantially fewer queries, thereby establishing a new standard for interpretable jailbreaking methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ramesh-etal-2024-gpt">
<titleInfo>
<title>GPT-4 Jailbreaks Itself with Near-Perfect Success Using Self-Explanation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Govind</namePart>
<namePart type="family">Ramesh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yao</namePart>
<namePart type="family">Dou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Research on jailbreaking has been valuable for testing and understanding the safety and security issues of large language models (LLMs). In this paper, we introduce Iterative Refinement Induced Self-Jailbreak (IRIS), a novel approach that leverages the reflective capabilities of LLMs for jailbreaking with only black-box access. Unlike previous methods, IRIS simplifies the jailbreaking process by using a single model as both the attacker and target. This method first iteratively refines adversarial prompts through self-explanation, which is crucial for ensuring that even well-aligned LLMs obey adversarial instructions. IRIS then rates and enhances the output given the refined prompt to increase its harmfulness. We find that IRIS achieves jailbreak success rates of 98% on GPT-4, 92% on GPT-4 Turbo, and 94% on Llama-3.1-70B in under 7 queries. It significantly outperforms prior approaches in automatic, black-box, and interpretable jailbreaking, while requiring substantially fewer queries, thereby establishing a new standard for interpretable jailbreaking methods.</abstract>
<identifier type="citekey">ramesh-etal-2024-gpt</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.1235</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>22139</start>
<end>22148</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GPT-4 Jailbreaks Itself with Near-Perfect Success Using Self-Explanation
%A Ramesh, Govind
%A Dou, Yao
%A Xu, Wei
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F ramesh-etal-2024-gpt
%X Research on jailbreaking has been valuable for testing and understanding the safety and security issues of large language models (LLMs). In this paper, we introduce Iterative Refinement Induced Self-Jailbreak (IRIS), a novel approach that leverages the reflective capabilities of LLMs for jailbreaking with only black-box access. Unlike previous methods, IRIS simplifies the jailbreaking process by using a single model as both the attacker and target. This method first iteratively refines adversarial prompts through self-explanation, which is crucial for ensuring that even well-aligned LLMs obey adversarial instructions. IRIS then rates and enhances the output given the refined prompt to increase its harmfulness. We find that IRIS achieves jailbreak success rates of 98% on GPT-4, 92% on GPT-4 Turbo, and 94% on Llama-3.1-70B in under 7 queries. It significantly outperforms prior approaches in automatic, black-box, and interpretable jailbreaking, while requiring substantially fewer queries, thereby establishing a new standard for interpretable jailbreaking methods.
%U https://aclanthology.org/2024.emnlp-main.1235
%P 22139-22148
Markdown (Informal)
[GPT-4 Jailbreaks Itself with Near-Perfect Success Using Self-Explanation](https://aclanthology.org/2024.emnlp-main.1235) (Ramesh et al., EMNLP 2024)
ACL