@inproceedings{wang-etal-2024-fedkim,
title = "{FEDKIM}: Adaptive Federated Knowledge Injection into Medical Foundation Models",
author = "Wang, Xiaochen and
Wang, Jiaqi and
Xiao, Houping and
Chen, Jinghui and
Ma, Fenglong",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.464",
pages = "8141--8154",
abstract = "Foundation models have demonstrated remarkable capabilities in handling diverse modalities and tasks, outperforming conventional artificial intelligence (AI) approaches that are highly task-specific and modality-reliant. In the medical domain, however, the development of comprehensive foundation models is constrained by limited access to diverse modalities and stringent privacy regulations. To address these constraints, this study introduces a novel knowledge injection approach, FedKIM, designed to scale the medical foundation model within a federated learning framework. FedKIM leverages lightweight local models to extract healthcare knowledge from private data and integrates this knowledge into a centralized foundation model using a designed adaptive Multitask Multimodal Mixture Of Experts (M$^3$OE) module. This method not only preserves privacy but also enhances the model{'}s ability to handle complex medical tasks involving multiple modalities. Our extensive experiments across twelve tasks in seven modalities demonstrate the effectiveness of FedKIM in various settings, highlighting its potential to scale medical foundation models without direct access to sensitive data. Source codes are available at https://github.com/XiaochenWang-PSU/FedKIM.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2024-fedkim">
<titleInfo>
<title>FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaochen</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiaqi</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Houping</namePart>
<namePart type="family">Xiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinghui</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fenglong</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Foundation models have demonstrated remarkable capabilities in handling diverse modalities and tasks, outperforming conventional artificial intelligence (AI) approaches that are highly task-specific and modality-reliant. In the medical domain, however, the development of comprehensive foundation models is constrained by limited access to diverse modalities and stringent privacy regulations. To address these constraints, this study introduces a novel knowledge injection approach, FedKIM, designed to scale the medical foundation model within a federated learning framework. FedKIM leverages lightweight local models to extract healthcare knowledge from private data and integrates this knowledge into a centralized foundation model using a designed adaptive Multitask Multimodal Mixture Of Experts (M³OE) module. This method not only preserves privacy but also enhances the model’s ability to handle complex medical tasks involving multiple modalities. Our extensive experiments across twelve tasks in seven modalities demonstrate the effectiveness of FedKIM in various settings, highlighting its potential to scale medical foundation models without direct access to sensitive data. Source codes are available at https://github.com/XiaochenWang-PSU/FedKIM.</abstract>
<identifier type="citekey">wang-etal-2024-fedkim</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.464</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>8141</start>
<end>8154</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation Models
%A Wang, Xiaochen
%A Wang, Jiaqi
%A Xiao, Houping
%A Chen, Jinghui
%A Ma, Fenglong
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F wang-etal-2024-fedkim
%X Foundation models have demonstrated remarkable capabilities in handling diverse modalities and tasks, outperforming conventional artificial intelligence (AI) approaches that are highly task-specific and modality-reliant. In the medical domain, however, the development of comprehensive foundation models is constrained by limited access to diverse modalities and stringent privacy regulations. To address these constraints, this study introduces a novel knowledge injection approach, FedKIM, designed to scale the medical foundation model within a federated learning framework. FedKIM leverages lightweight local models to extract healthcare knowledge from private data and integrates this knowledge into a centralized foundation model using a designed adaptive Multitask Multimodal Mixture Of Experts (M³OE) module. This method not only preserves privacy but also enhances the model’s ability to handle complex medical tasks involving multiple modalities. Our extensive experiments across twelve tasks in seven modalities demonstrate the effectiveness of FedKIM in various settings, highlighting its potential to scale medical foundation models without direct access to sensitive data. Source codes are available at https://github.com/XiaochenWang-PSU/FedKIM.
%U https://aclanthology.org/2024.emnlp-main.464
%P 8141-8154
Markdown (Informal)
[FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation Models](https://aclanthology.org/2024.emnlp-main.464) (Wang et al., EMNLP 2024)
ACL