@inproceedings{bhan-etal-2024-self,
title = "Self-{AMPLIFY}: Improving Small Language Models with Self Post Hoc Explanations",
author = {Bhan, Milan and
Vittaut, Jean-No{\"e}l and
Chesneau, Nicolas and
Lesot, Marie-Jeanne},
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.615",
pages = "10974--10991",
abstract = "Incorporating natural language rationales in the prompt and In-Context Learning (ICL) have led to a significant improvement of Large Language Models (LLMs) performance. However, generating high-quality rationales require human-annotation or the use of auxiliary proxy models. In this work, we propose Self-AMPLIFY to automatically generate rationales from post hoc explanation methods applied to Small Language Models (SLMs) to improve their own performance. Self-AMPLIFY is a 3-step method that targets samples, generates rationales and builds a final prompt to leverage ICL. Self-AMPLIFY performance is evaluated on four SLMs and five datasets requiring strong reasoning abilities. Self-AMPLIFY achieves good results against competitors, leading to strong accuracy improvement. Self-AMPLIFY is the first method to apply post hoc explanation methods to autoregressive language models to generate rationales to improve their own performance in a fully automated manner.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bhan-etal-2024-self">
<titleInfo>
<title>Self-AMPLIFY: Improving Small Language Models with Self Post Hoc Explanations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Milan</namePart>
<namePart type="family">Bhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean-Noël</namePart>
<namePart type="family">Vittaut</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicolas</namePart>
<namePart type="family">Chesneau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Jeanne</namePart>
<namePart type="family">Lesot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Incorporating natural language rationales in the prompt and In-Context Learning (ICL) have led to a significant improvement of Large Language Models (LLMs) performance. However, generating high-quality rationales require human-annotation or the use of auxiliary proxy models. In this work, we propose Self-AMPLIFY to automatically generate rationales from post hoc explanation methods applied to Small Language Models (SLMs) to improve their own performance. Self-AMPLIFY is a 3-step method that targets samples, generates rationales and builds a final prompt to leverage ICL. Self-AMPLIFY performance is evaluated on four SLMs and five datasets requiring strong reasoning abilities. Self-AMPLIFY achieves good results against competitors, leading to strong accuracy improvement. Self-AMPLIFY is the first method to apply post hoc explanation methods to autoregressive language models to generate rationales to improve their own performance in a fully automated manner.</abstract>
<identifier type="citekey">bhan-etal-2024-self</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.615</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>10974</start>
<end>10991</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Self-AMPLIFY: Improving Small Language Models with Self Post Hoc Explanations
%A Bhan, Milan
%A Vittaut, Jean-Noël
%A Chesneau, Nicolas
%A Lesot, Marie-Jeanne
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F bhan-etal-2024-self
%X Incorporating natural language rationales in the prompt and In-Context Learning (ICL) have led to a significant improvement of Large Language Models (LLMs) performance. However, generating high-quality rationales require human-annotation or the use of auxiliary proxy models. In this work, we propose Self-AMPLIFY to automatically generate rationales from post hoc explanation methods applied to Small Language Models (SLMs) to improve their own performance. Self-AMPLIFY is a 3-step method that targets samples, generates rationales and builds a final prompt to leverage ICL. Self-AMPLIFY performance is evaluated on four SLMs and five datasets requiring strong reasoning abilities. Self-AMPLIFY achieves good results against competitors, leading to strong accuracy improvement. Self-AMPLIFY is the first method to apply post hoc explanation methods to autoregressive language models to generate rationales to improve their own performance in a fully automated manner.
%U https://aclanthology.org/2024.emnlp-main.615
%P 10974-10991
Markdown (Informal)
[Self-AMPLIFY: Improving Small Language Models with Self Post Hoc Explanations](https://aclanthology.org/2024.emnlp-main.615) (Bhan et al., EMNLP 2024)
ACL