@inproceedings{merrill-etal-2024-evaluating,
title = "Evaluating $n$-Gram Novelty of Language Models Using Rusty-{DAWG}",
author = "Merrill, William and
Smith, Noah and
Elazar, Yanai",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.800",
pages = "14459--14473",
abstract = "How novel are texts generated by language models (LMs) relative to their training corpora? In this work, we investigate the extent to which modern LMs generate $n$-grams from their training data, evaluating both (i) the probability LMs assign to complete training $n$-grams and (ii) $n$-novelty, the proportion of $n$-grams generated by an LM that did not appear in the training data (for arbitrarily large $n$). To enable arbitrary-length $n$-gram search over a corpus in constant time w.r.t. corpus size, we develop Rusty-DAWG, a novel search tool inspired by indexing of genomic data. We compare the novelty of LM-generated text to human-written text and explore factors that affect generation novelty, focusing on the Pythia models. We find that, for $n > 4$, LM-generated text is less novel than human-written text, though it is more novel for smaller $n$. Larger LMs and more constrained decoding strategies both decrease novelty. Finally, we show that LMs complete $n$-grams with lower loss if they are more frequent in the training data. Overall, our results reveal factors influencing the novelty of LM-generated text, and we release Rusty-DAWG to facilitate further pretraining data research.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="merrill-etal-2024-evaluating">
<titleInfo>
<title>Evaluating n-Gram Novelty of Language Models Using Rusty-DAWG</title>
</titleInfo>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Merrill</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noah</namePart>
<namePart type="family">Smith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanai</namePart>
<namePart type="family">Elazar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>How novel are texts generated by language models (LMs) relative to their training corpora? In this work, we investigate the extent to which modern LMs generate n-grams from their training data, evaluating both (i) the probability LMs assign to complete training n-grams and (ii) n-novelty, the proportion of n-grams generated by an LM that did not appear in the training data (for arbitrarily large n). To enable arbitrary-length n-gram search over a corpus in constant time w.r.t. corpus size, we develop Rusty-DAWG, a novel search tool inspired by indexing of genomic data. We compare the novelty of LM-generated text to human-written text and explore factors that affect generation novelty, focusing on the Pythia models. We find that, for n > 4, LM-generated text is less novel than human-written text, though it is more novel for smaller n. Larger LMs and more constrained decoding strategies both decrease novelty. Finally, we show that LMs complete n-grams with lower loss if they are more frequent in the training data. Overall, our results reveal factors influencing the novelty of LM-generated text, and we release Rusty-DAWG to facilitate further pretraining data research.</abstract>
<identifier type="citekey">merrill-etal-2024-evaluating</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.800</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>14459</start>
<end>14473</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evaluating n-Gram Novelty of Language Models Using Rusty-DAWG
%A Merrill, William
%A Smith, Noah
%A Elazar, Yanai
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F merrill-etal-2024-evaluating
%X How novel are texts generated by language models (LMs) relative to their training corpora? In this work, we investigate the extent to which modern LMs generate n-grams from their training data, evaluating both (i) the probability LMs assign to complete training n-grams and (ii) n-novelty, the proportion of n-grams generated by an LM that did not appear in the training data (for arbitrarily large n). To enable arbitrary-length n-gram search over a corpus in constant time w.r.t. corpus size, we develop Rusty-DAWG, a novel search tool inspired by indexing of genomic data. We compare the novelty of LM-generated text to human-written text and explore factors that affect generation novelty, focusing on the Pythia models. We find that, for n > 4, LM-generated text is less novel than human-written text, though it is more novel for smaller n. Larger LMs and more constrained decoding strategies both decrease novelty. Finally, we show that LMs complete n-grams with lower loss if they are more frequent in the training data. Overall, our results reveal factors influencing the novelty of LM-generated text, and we release Rusty-DAWG to facilitate further pretraining data research.
%U https://aclanthology.org/2024.emnlp-main.800
%P 14459-14473
Markdown (Informal)
[Evaluating n-Gram Novelty of Language Models Using Rusty-DAWG](https://aclanthology.org/2024.emnlp-main.800) (Merrill et al., EMNLP 2024)
ACL