@inproceedings{xia-etal-2024-opengraph,
title = "{O}pen{G}raph: Towards Open Graph Foundation Models",
author = "Xia, Lianghao and
Kao, Ben and
Huang, Chao",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.132",
pages = "2365--2379",
abstract = "Graph learning has become essential in various domains, including recommendation systems and social network analysis. Graph Neural Networks (GNNs) have emerged as promising techniques for encoding structural information and improving performance in tasks like link prediction and node classification. However, a key challenge remains: the difficulty of generalizing to unseen graph data with different properties. In this work, we propose a novel graph foundation model, called OpenGraph, to address this challenge. Our approach tackles several technical obstacles. Firstly, we enhance data augmentation using a large language model (LLM) to overcome data scarcity in real-world scenarios. Secondly, we introduce a unified graph tokenizer that enables the model to generalize effectively to diverse graph data, even when encountering unseen properties during training. Thirdly, our developed scalable graph transformer captures node-wise dependencies within the global topological context. Extensive experiments validate the effectiveness of our framework. By adapting OpenGraph to new graph characteristics and comprehending diverse graphs, our approach achieves remarkable zero-shot graph learning performance across various settings. We release the model implementation at https://github.com/HKUDS/OpenGraph.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xia-etal-2024-opengraph">
<titleInfo>
<title>OpenGraph: Towards Open Graph Foundation Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lianghao</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ben</namePart>
<namePart type="family">Kao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chao</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Graph learning has become essential in various domains, including recommendation systems and social network analysis. Graph Neural Networks (GNNs) have emerged as promising techniques for encoding structural information and improving performance in tasks like link prediction and node classification. However, a key challenge remains: the difficulty of generalizing to unseen graph data with different properties. In this work, we propose a novel graph foundation model, called OpenGraph, to address this challenge. Our approach tackles several technical obstacles. Firstly, we enhance data augmentation using a large language model (LLM) to overcome data scarcity in real-world scenarios. Secondly, we introduce a unified graph tokenizer that enables the model to generalize effectively to diverse graph data, even when encountering unseen properties during training. Thirdly, our developed scalable graph transformer captures node-wise dependencies within the global topological context. Extensive experiments validate the effectiveness of our framework. By adapting OpenGraph to new graph characteristics and comprehending diverse graphs, our approach achieves remarkable zero-shot graph learning performance across various settings. We release the model implementation at https://github.com/HKUDS/OpenGraph.</abstract>
<identifier type="citekey">xia-etal-2024-opengraph</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.132</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>2365</start>
<end>2379</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T OpenGraph: Towards Open Graph Foundation Models
%A Xia, Lianghao
%A Kao, Ben
%A Huang, Chao
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F xia-etal-2024-opengraph
%X Graph learning has become essential in various domains, including recommendation systems and social network analysis. Graph Neural Networks (GNNs) have emerged as promising techniques for encoding structural information and improving performance in tasks like link prediction and node classification. However, a key challenge remains: the difficulty of generalizing to unseen graph data with different properties. In this work, we propose a novel graph foundation model, called OpenGraph, to address this challenge. Our approach tackles several technical obstacles. Firstly, we enhance data augmentation using a large language model (LLM) to overcome data scarcity in real-world scenarios. Secondly, we introduce a unified graph tokenizer that enables the model to generalize effectively to diverse graph data, even when encountering unseen properties during training. Thirdly, our developed scalable graph transformer captures node-wise dependencies within the global topological context. Extensive experiments validate the effectiveness of our framework. By adapting OpenGraph to new graph characteristics and comprehending diverse graphs, our approach achieves remarkable zero-shot graph learning performance across various settings. We release the model implementation at https://github.com/HKUDS/OpenGraph.
%U https://aclanthology.org/2024.findings-emnlp.132
%P 2365-2379
Markdown (Informal)
[OpenGraph: Towards Open Graph Foundation Models](https://aclanthology.org/2024.findings-emnlp.132) (Xia et al., Findings 2024)
ACL
- Lianghao Xia, Ben Kao, and Chao Huang. 2024. OpenGraph: Towards Open Graph Foundation Models. In Findings of the Association for Computational Linguistics: EMNLP 2024, pages 2365–2379, Miami, Florida, USA. Association for Computational Linguistics.