@inproceedings{cha-lee-2024-pre,
title = "Pre-trained Language Models Return Distinguishable Probability Distributions to Unfaithfully Hallucinated Texts",
author = "Cha, Taehun and
Lee, Donghun",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.738",
pages = "12630--12639",
abstract = "In this work, we show the pre-trained language models return distinguishable generation probability and uncertainty distribution to unfaithfully hallucinated texts, regardless of their size and structure. By examining 24 models on 6 data sets, we find out that 88-98{\%} of cases return statistically significantly distinguishable generation probability and uncertainty distributions. Using this general phenomenon, we showcase a hallucination-reducing training algorithm. Our algorithm outperforms other baselines by achieving higher faithfulness metrics while maintaining sound general text quality measures.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cha-lee-2024-pre">
<titleInfo>
<title>Pre-trained Language Models Return Distinguishable Probability Distributions to Unfaithfully Hallucinated Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Taehun</namePart>
<namePart type="family">Cha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Donghun</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we show the pre-trained language models return distinguishable generation probability and uncertainty distribution to unfaithfully hallucinated texts, regardless of their size and structure. By examining 24 models on 6 data sets, we find out that 88-98% of cases return statistically significantly distinguishable generation probability and uncertainty distributions. Using this general phenomenon, we showcase a hallucination-reducing training algorithm. Our algorithm outperforms other baselines by achieving higher faithfulness metrics while maintaining sound general text quality measures.</abstract>
<identifier type="citekey">cha-lee-2024-pre</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.738</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>12630</start>
<end>12639</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Pre-trained Language Models Return Distinguishable Probability Distributions to Unfaithfully Hallucinated Texts
%A Cha, Taehun
%A Lee, Donghun
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F cha-lee-2024-pre
%X In this work, we show the pre-trained language models return distinguishable generation probability and uncertainty distribution to unfaithfully hallucinated texts, regardless of their size and structure. By examining 24 models on 6 data sets, we find out that 88-98% of cases return statistically significantly distinguishable generation probability and uncertainty distributions. Using this general phenomenon, we showcase a hallucination-reducing training algorithm. Our algorithm outperforms other baselines by achieving higher faithfulness metrics while maintaining sound general text quality measures.
%U https://aclanthology.org/2024.findings-emnlp.738
%P 12630-12639
Markdown (Informal)
[Pre-trained Language Models Return Distinguishable Probability Distributions to Unfaithfully Hallucinated Texts](https://aclanthology.org/2024.findings-emnlp.738) (Cha & Lee, Findings 2024)
ACL