@inproceedings{zhu-zamani-2024-icxml,
title = "{ICXML}: An In-Context Learning Framework for Zero-Shot Extreme Multi-Label Classification",
author = "Zhu, Yaxin and
Zamani, Hamed",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-naacl.134",
doi = "10.18653/v1/2024.findings-naacl.134",
pages = "2086--2098",
abstract = "This paper focuses on the task of Extreme Multi-Label Classification (XMC) whose goal is to predict multiple labels for each instance from an extremely large label space. While existing research has primarily focused on fully supervised XMC, real-world scenarios often lack supervision signals, highlighting the importance of zero-shot settings. Given the large label space, utilizing in-context learning approaches is not trivial. We address this issue by introducing In-Context Extreme Multi-label Learning (ICXML), a two-stage framework that cuts down the search space by generating a set of candidate labels through in-context learning and then reranks them. Extensive experiments suggest that ICXML advances the state of the art on two diverse public benchmarks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhu-zamani-2024-icxml">
<titleInfo>
<title>ICXML: An In-Context Learning Framework for Zero-Shot Extreme Multi-Label Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaxin</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hamed</namePart>
<namePart type="family">Zamani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper focuses on the task of Extreme Multi-Label Classification (XMC) whose goal is to predict multiple labels for each instance from an extremely large label space. While existing research has primarily focused on fully supervised XMC, real-world scenarios often lack supervision signals, highlighting the importance of zero-shot settings. Given the large label space, utilizing in-context learning approaches is not trivial. We address this issue by introducing In-Context Extreme Multi-label Learning (ICXML), a two-stage framework that cuts down the search space by generating a set of candidate labels through in-context learning and then reranks them. Extensive experiments suggest that ICXML advances the state of the art on two diverse public benchmarks.</abstract>
<identifier type="citekey">zhu-zamani-2024-icxml</identifier>
<identifier type="doi">10.18653/v1/2024.findings-naacl.134</identifier>
<location>
<url>https://aclanthology.org/2024.findings-naacl.134</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>2086</start>
<end>2098</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ICXML: An In-Context Learning Framework for Zero-Shot Extreme Multi-Label Classification
%A Zhu, Yaxin
%A Zamani, Hamed
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Findings of the Association for Computational Linguistics: NAACL 2024
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F zhu-zamani-2024-icxml
%X This paper focuses on the task of Extreme Multi-Label Classification (XMC) whose goal is to predict multiple labels for each instance from an extremely large label space. While existing research has primarily focused on fully supervised XMC, real-world scenarios often lack supervision signals, highlighting the importance of zero-shot settings. Given the large label space, utilizing in-context learning approaches is not trivial. We address this issue by introducing In-Context Extreme Multi-label Learning (ICXML), a two-stage framework that cuts down the search space by generating a set of candidate labels through in-context learning and then reranks them. Extensive experiments suggest that ICXML advances the state of the art on two diverse public benchmarks.
%R 10.18653/v1/2024.findings-naacl.134
%U https://aclanthology.org/2024.findings-naacl.134
%U https://doi.org/10.18653/v1/2024.findings-naacl.134
%P 2086-2098
Markdown (Informal)
[ICXML: An In-Context Learning Framework for Zero-Shot Extreme Multi-Label Classification](https://aclanthology.org/2024.findings-naacl.134) (Zhu & Zamani, Findings 2024)
ACL