@inproceedings{prasad-etal-2024-explanation,
title = "Explanation Extraction from Hierarchical Classification Frameworks for Long Legal Documents",
author = "Prasad, Nishchal and
Dkaki, Taoufiq and
Boughanem, Mohand",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-naacl.76",
doi = "10.18653/v1/2024.findings-naacl.76",
pages = "1192--1201",
abstract = "Hierarchical classification frameworks have been widely used to process long sequences, especially in the legal domain for predictions from long legal documents. But being black-box models they are unable to explain their predictions making them less reliable for practical applications, more so in the legal domain. In this work, we develop an extractive explanation algorithm for hierarchical frameworks for long sequences based on the sensitivity of the trained model to its input perturbations. We perturb using occlusion and develop Ob-HEx; an Occlusion-based Hierarchical Explanation-extractor. We adapt Ob-HEx to Hierarchical Transformer models trained on long Indian legal texts. And use Ob-HEx to analyze them and extract their explanations for the ILDC-Expert dataset, achieving a minimum gain of 1 point over the previous benchmark on most of our performance evaluation metrics.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="prasad-etal-2024-explanation">
<titleInfo>
<title>Explanation Extraction from Hierarchical Classification Frameworks for Long Legal Documents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nishchal</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taoufiq</namePart>
<namePart type="family">Dkaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohand</namePart>
<namePart type="family">Boughanem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Hierarchical classification frameworks have been widely used to process long sequences, especially in the legal domain for predictions from long legal documents. But being black-box models they are unable to explain their predictions making them less reliable for practical applications, more so in the legal domain. In this work, we develop an extractive explanation algorithm for hierarchical frameworks for long sequences based on the sensitivity of the trained model to its input perturbations. We perturb using occlusion and develop Ob-HEx; an Occlusion-based Hierarchical Explanation-extractor. We adapt Ob-HEx to Hierarchical Transformer models trained on long Indian legal texts. And use Ob-HEx to analyze them and extract their explanations for the ILDC-Expert dataset, achieving a minimum gain of 1 point over the previous benchmark on most of our performance evaluation metrics.</abstract>
<identifier type="citekey">prasad-etal-2024-explanation</identifier>
<identifier type="doi">10.18653/v1/2024.findings-naacl.76</identifier>
<location>
<url>https://aclanthology.org/2024.findings-naacl.76</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>1192</start>
<end>1201</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Explanation Extraction from Hierarchical Classification Frameworks for Long Legal Documents
%A Prasad, Nishchal
%A Dkaki, Taoufiq
%A Boughanem, Mohand
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Findings of the Association for Computational Linguistics: NAACL 2024
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F prasad-etal-2024-explanation
%X Hierarchical classification frameworks have been widely used to process long sequences, especially in the legal domain for predictions from long legal documents. But being black-box models they are unable to explain their predictions making them less reliable for practical applications, more so in the legal domain. In this work, we develop an extractive explanation algorithm for hierarchical frameworks for long sequences based on the sensitivity of the trained model to its input perturbations. We perturb using occlusion and develop Ob-HEx; an Occlusion-based Hierarchical Explanation-extractor. We adapt Ob-HEx to Hierarchical Transformer models trained on long Indian legal texts. And use Ob-HEx to analyze them and extract their explanations for the ILDC-Expert dataset, achieving a minimum gain of 1 point over the previous benchmark on most of our performance evaluation metrics.
%R 10.18653/v1/2024.findings-naacl.76
%U https://aclanthology.org/2024.findings-naacl.76
%U https://doi.org/10.18653/v1/2024.findings-naacl.76
%P 1192-1201
Markdown (Informal)
[Explanation Extraction from Hierarchical Classification Frameworks for Long Legal Documents](https://aclanthology.org/2024.findings-naacl.76) (Prasad et al., Findings 2024)
ACL