@inproceedings{guan-etal-2024-semantics,
title = "Semantics-Aware Dual Graph Convolutional Networks for Argument Pair Extraction",
author = "Guan, Minzhao and
Qiu, Zhixun and
Li, Fenghuan and
Xue, Yun",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1276",
pages = "14652--14663",
abstract = "Argument pair extraction (APE) is a task that aims to extract interactive argument pairs from two argument passages. Generally, existing works focus on either simple argument interaction or task form conversion, instead of thorough deep-level feature exploitation of argument pairs. To address this issue, a Semantics-Aware Dual Graph Convolutional Networks (SADGCN) is proposed for APE. Specifically, the co-occurring word graph is designed to tackle the lexical and semantic relevance of arguments with a pre-trained Rouge-guided Transformer (ROT). Considering the topic relevance in argument pairs, a topic graph is constructed by the neural topic model to leverage the topic information of argument passages. The two graphs are fused via a gating mechanism, which contributes to the extraction of argument pairs. Experimental results indicate that our approach achieves the state-of-the-art performance. The performance on F1 score is significantly improved by 6.56{\%} against the existing best alternative.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="guan-etal-2024-semantics">
<titleInfo>
<title>Semantics-Aware Dual Graph Convolutional Networks for Argument Pair Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Minzhao</namePart>
<namePart type="family">Guan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhixun</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fenghuan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Argument pair extraction (APE) is a task that aims to extract interactive argument pairs from two argument passages. Generally, existing works focus on either simple argument interaction or task form conversion, instead of thorough deep-level feature exploitation of argument pairs. To address this issue, a Semantics-Aware Dual Graph Convolutional Networks (SADGCN) is proposed for APE. Specifically, the co-occurring word graph is designed to tackle the lexical and semantic relevance of arguments with a pre-trained Rouge-guided Transformer (ROT). Considering the topic relevance in argument pairs, a topic graph is constructed by the neural topic model to leverage the topic information of argument passages. The two graphs are fused via a gating mechanism, which contributes to the extraction of argument pairs. Experimental results indicate that our approach achieves the state-of-the-art performance. The performance on F1 score is significantly improved by 6.56% against the existing best alternative.</abstract>
<identifier type="citekey">guan-etal-2024-semantics</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.1276</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>14652</start>
<end>14663</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantics-Aware Dual Graph Convolutional Networks for Argument Pair Extraction
%A Guan, Minzhao
%A Qiu, Zhixun
%A Li, Fenghuan
%A Xue, Yun
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F guan-etal-2024-semantics
%X Argument pair extraction (APE) is a task that aims to extract interactive argument pairs from two argument passages. Generally, existing works focus on either simple argument interaction or task form conversion, instead of thorough deep-level feature exploitation of argument pairs. To address this issue, a Semantics-Aware Dual Graph Convolutional Networks (SADGCN) is proposed for APE. Specifically, the co-occurring word graph is designed to tackle the lexical and semantic relevance of arguments with a pre-trained Rouge-guided Transformer (ROT). Considering the topic relevance in argument pairs, a topic graph is constructed by the neural topic model to leverage the topic information of argument passages. The two graphs are fused via a gating mechanism, which contributes to the extraction of argument pairs. Experimental results indicate that our approach achieves the state-of-the-art performance. The performance on F1 score is significantly improved by 6.56% against the existing best alternative.
%U https://aclanthology.org/2024.lrec-main.1276
%P 14652-14663
Markdown (Informal)
[Semantics-Aware Dual Graph Convolutional Networks for Argument Pair Extraction](https://aclanthology.org/2024.lrec-main.1276) (Guan et al., LREC-COLING 2024)
ACL