@inproceedings{chaudhary-etal-2024-topic,
title = "Topic Classification and Headline Generation for {M}altese Using a Public News Corpus",
author = "Chaudhary, Amit Kumar and
Micallef, Kurt and
Borg, Claudia",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1414",
pages = "16274--16281",
abstract = "The development of NLP tools for low-resource languages is impeded by the lack of data. While recent unsupervised pre-training approaches ease this requirement, the need for labelled data is crucial to progress the development of such tools. Moreover, publicly available datasets for such languages typically cover low-level syntactic tasks. In this work, we introduce new semantic datasets for Maltese generated automatically using associated metadata from a corpus in the news domain. The datasets are a news tag multi-label classification and a news abstractive summarisation task by generating its title. We also present an evaluation using publicly available models as baselines. Our results show that current models are lacking the semantic knowledge required to solve such tasks, shedding light on the need to use better modelling approaches for Maltese.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chaudhary-etal-2024-topic">
<titleInfo>
<title>Topic Classification and Headline Generation for Maltese Using a Public News Corpus</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amit</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Chaudhary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kurt</namePart>
<namePart type="family">Micallef</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Borg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The development of NLP tools for low-resource languages is impeded by the lack of data. While recent unsupervised pre-training approaches ease this requirement, the need for labelled data is crucial to progress the development of such tools. Moreover, publicly available datasets for such languages typically cover low-level syntactic tasks. In this work, we introduce new semantic datasets for Maltese generated automatically using associated metadata from a corpus in the news domain. The datasets are a news tag multi-label classification and a news abstractive summarisation task by generating its title. We also present an evaluation using publicly available models as baselines. Our results show that current models are lacking the semantic knowledge required to solve such tasks, shedding light on the need to use better modelling approaches for Maltese.</abstract>
<identifier type="citekey">chaudhary-etal-2024-topic</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.1414</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>16274</start>
<end>16281</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Topic Classification and Headline Generation for Maltese Using a Public News Corpus
%A Chaudhary, Amit Kumar
%A Micallef, Kurt
%A Borg, Claudia
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F chaudhary-etal-2024-topic
%X The development of NLP tools for low-resource languages is impeded by the lack of data. While recent unsupervised pre-training approaches ease this requirement, the need for labelled data is crucial to progress the development of such tools. Moreover, publicly available datasets for such languages typically cover low-level syntactic tasks. In this work, we introduce new semantic datasets for Maltese generated automatically using associated metadata from a corpus in the news domain. The datasets are a news tag multi-label classification and a news abstractive summarisation task by generating its title. We also present an evaluation using publicly available models as baselines. Our results show that current models are lacking the semantic knowledge required to solve such tasks, shedding light on the need to use better modelling approaches for Maltese.
%U https://aclanthology.org/2024.lrec-main.1414
%P 16274-16281
Markdown (Informal)
[Topic Classification and Headline Generation for Maltese Using a Public News Corpus](https://aclanthology.org/2024.lrec-main.1414) (Chaudhary et al., LREC-COLING 2024)
ACL