@inproceedings{sundararajan-etal-2024-improving,
title = "Improving Factual Accuracy of Neural Table-to-Text Output by Addressing Input Problems in {T}o{TT}o",
author = "Sundararajan, Barkavi and
Sripada, Yaji and
Reiter, Ehud",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.408",
doi = "10.18653/v1/2024.naacl-long.408",
pages = "7350--7376",
abstract = "Neural Table-to-Text models tend to hallucinate, producing texts that contain factual errors. We investigate whether such errors in the output can be traced back to problems with the input. We manually annotated 1,837 texts generated by multiple models in the politics domain of the ToTTo dataset. We identify the input problems that are responsible for many output errors and show that fixing these inputs reduces factual errors by between 52{\%} and 76{\%} (depending on the model). In addition, we observe that models struggle in processing tabular inputs that are structured in a non-standard way, particularly when the input lacks distinct row and column values or when the column headers are not correctly mapped to corresponding values.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sundararajan-etal-2024-improving">
<titleInfo>
<title>Improving Factual Accuracy of Neural Table-to-Text Output by Addressing Input Problems in ToTTo</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barkavi</namePart>
<namePart type="family">Sundararajan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaji</namePart>
<namePart type="family">Sripada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehud</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Neural Table-to-Text models tend to hallucinate, producing texts that contain factual errors. We investigate whether such errors in the output can be traced back to problems with the input. We manually annotated 1,837 texts generated by multiple models in the politics domain of the ToTTo dataset. We identify the input problems that are responsible for many output errors and show that fixing these inputs reduces factual errors by between 52% and 76% (depending on the model). In addition, we observe that models struggle in processing tabular inputs that are structured in a non-standard way, particularly when the input lacks distinct row and column values or when the column headers are not correctly mapped to corresponding values.</abstract>
<identifier type="citekey">sundararajan-etal-2024-improving</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.408</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.408</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>7350</start>
<end>7376</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Factual Accuracy of Neural Table-to-Text Output by Addressing Input Problems in ToTTo
%A Sundararajan, Barkavi
%A Sripada, Yaji
%A Reiter, Ehud
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F sundararajan-etal-2024-improving
%X Neural Table-to-Text models tend to hallucinate, producing texts that contain factual errors. We investigate whether such errors in the output can be traced back to problems with the input. We manually annotated 1,837 texts generated by multiple models in the politics domain of the ToTTo dataset. We identify the input problems that are responsible for many output errors and show that fixing these inputs reduces factual errors by between 52% and 76% (depending on the model). In addition, we observe that models struggle in processing tabular inputs that are structured in a non-standard way, particularly when the input lacks distinct row and column values or when the column headers are not correctly mapped to corresponding values.
%R 10.18653/v1/2024.naacl-long.408
%U https://aclanthology.org/2024.naacl-long.408
%U https://doi.org/10.18653/v1/2024.naacl-long.408
%P 7350-7376
Markdown (Informal)
[Improving Factual Accuracy of Neural Table-to-Text Output by Addressing Input Problems in ToTTo](https://aclanthology.org/2024.naacl-long.408) (Sundararajan et al., NAACL 2024)
ACL