@inproceedings{sankar-etal-2024-iitroorkee,
title = "{IITR}oorkee@{SMM}4{H} 2024 Cross-Platform Age Detection in {T}witter and {R}eddit Using Transformer-Based Model",
author = "Sankar, Thadavarthi and
Suraj, Dudekula and
Reddy, Mallamgari and
Toshniwal, Durga and
Agarwal, Amit",
editor = "Xu, Dongfang and
Gonzalez-Hernandez, Graciela",
booktitle = "Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.smm4h-1.23",
pages = "101--105",
abstract = "This paper outlines the methodology for the automatic extraction of self-reported ages from social media posts as part of the Social Media Mining for Health (SMM4H) 2024 Workshop Shared Tasks. The focus was on Task 6: {``}Self-reported exact age classification with cross-platform evaluation in English.{''} The goal was to accurately identify age-related information from user-generated content, which is crucial for applications in public health monitoring, targeted advertising, and demographic research. A number of transformer-based models were employed, including RoBERTa-Base, BERT-Base, BiLSTM, and Flan T5 Base, leveraging their advanced capabilities in natural language understanding. The training strategies included fine-tuning foundational pre-trained language models and evaluating model performance using standard metrics: F1-score, Precision, and Recall. The experimental results demonstrated that the RoBERTa-Base model significantly outperformed the other models in this classification task. The best results achieved with the RoBERTa-Base model were an F1-score of 0.878, a Precision of 0.899, and a Recall of 0.858.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sankar-etal-2024-iitroorkee">
<titleInfo>
<title>IITRoorkee@SMM4H 2024 Cross-Platform Age Detection in Twitter and Reddit Using Transformer-Based Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thadavarthi</namePart>
<namePart type="family">Sankar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dudekula</namePart>
<namePart type="family">Suraj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mallamgari</namePart>
<namePart type="family">Reddy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Durga</namePart>
<namePart type="family">Toshniwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amit</namePart>
<namePart type="family">Agarwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dongfang</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper outlines the methodology for the automatic extraction of self-reported ages from social media posts as part of the Social Media Mining for Health (SMM4H) 2024 Workshop Shared Tasks. The focus was on Task 6: “Self-reported exact age classification with cross-platform evaluation in English.” The goal was to accurately identify age-related information from user-generated content, which is crucial for applications in public health monitoring, targeted advertising, and demographic research. A number of transformer-based models were employed, including RoBERTa-Base, BERT-Base, BiLSTM, and Flan T5 Base, leveraging their advanced capabilities in natural language understanding. The training strategies included fine-tuning foundational pre-trained language models and evaluating model performance using standard metrics: F1-score, Precision, and Recall. The experimental results demonstrated that the RoBERTa-Base model significantly outperformed the other models in this classification task. The best results achieved with the RoBERTa-Base model were an F1-score of 0.878, a Precision of 0.899, and a Recall of 0.858.</abstract>
<identifier type="citekey">sankar-etal-2024-iitroorkee</identifier>
<location>
<url>https://aclanthology.org/2024.smm4h-1.23</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>101</start>
<end>105</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IITRoorkee@SMM4H 2024 Cross-Platform Age Detection in Twitter and Reddit Using Transformer-Based Model
%A Sankar, Thadavarthi
%A Suraj, Dudekula
%A Reddy, Mallamgari
%A Toshniwal, Durga
%A Agarwal, Amit
%Y Xu, Dongfang
%Y Gonzalez-Hernandez, Graciela
%S Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F sankar-etal-2024-iitroorkee
%X This paper outlines the methodology for the automatic extraction of self-reported ages from social media posts as part of the Social Media Mining for Health (SMM4H) 2024 Workshop Shared Tasks. The focus was on Task 6: “Self-reported exact age classification with cross-platform evaluation in English.” The goal was to accurately identify age-related information from user-generated content, which is crucial for applications in public health monitoring, targeted advertising, and demographic research. A number of transformer-based models were employed, including RoBERTa-Base, BERT-Base, BiLSTM, and Flan T5 Base, leveraging their advanced capabilities in natural language understanding. The training strategies included fine-tuning foundational pre-trained language models and evaluating model performance using standard metrics: F1-score, Precision, and Recall. The experimental results demonstrated that the RoBERTa-Base model significantly outperformed the other models in this classification task. The best results achieved with the RoBERTa-Base model were an F1-score of 0.878, a Precision of 0.899, and a Recall of 0.858.
%U https://aclanthology.org/2024.smm4h-1.23
%P 101-105
Markdown (Informal)
[IITRoorkee@SMM4H 2024 Cross-Platform Age Detection in Twitter and Reddit Using Transformer-Based Model](https://aclanthology.org/2024.smm4h-1.23) (Sankar et al., SMM4H-WS 2024)
ACL