@inproceedings{athukoralage-etal-2024-lt4sg,
title = "{LT}4{SG}@{SMM}4{H}{'}24: Tweets Classification for Digital Epidemiology of Childhood Health Outcomes Using Pre-Trained Language Models",
author = "Athukoralage, Dasun and
Atapattu, Thushari and
Thilakaratne, Menasha and
Falkner, Katrina",
editor = "Xu, Dongfang and
Gonzalez-Hernandez, Graciela",
booktitle = "Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.smm4h-1.9",
pages = "38--41",
abstract = "This paper presents our approaches for the SMM4H{'}24 Shared Task 5 on the binary classification of English tweets reporting children{'}s medical disorders. Our first approach involves fine-tuning a single RoBERTa-large model, while the second approach entails ensembling the results of three fine-tuned BERTweet-large models. We demonstrate that although both approaches exhibit identical performance on validation data, the BERTweet-large ensemble excels on test data. Our best-performing system achieves an F1-score of 0.938 on test data, outperforming the benchmark classifier by 1.18{\%}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="athukoralage-etal-2024-lt4sg">
<titleInfo>
<title>LT4SG@SMM4H’24: Tweets Classification for Digital Epidemiology of Childhood Health Outcomes Using Pre-Trained Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dasun</namePart>
<namePart type="family">Athukoralage</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thushari</namePart>
<namePart type="family">Atapattu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Menasha</namePart>
<namePart type="family">Thilakaratne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katrina</namePart>
<namePart type="family">Falkner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dongfang</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our approaches for the SMM4H’24 Shared Task 5 on the binary classification of English tweets reporting children’s medical disorders. Our first approach involves fine-tuning a single RoBERTa-large model, while the second approach entails ensembling the results of three fine-tuned BERTweet-large models. We demonstrate that although both approaches exhibit identical performance on validation data, the BERTweet-large ensemble excels on test data. Our best-performing system achieves an F1-score of 0.938 on test data, outperforming the benchmark classifier by 1.18%.</abstract>
<identifier type="citekey">athukoralage-etal-2024-lt4sg</identifier>
<location>
<url>https://aclanthology.org/2024.smm4h-1.9</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>38</start>
<end>41</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LT4SG@SMM4H’24: Tweets Classification for Digital Epidemiology of Childhood Health Outcomes Using Pre-Trained Language Models
%A Athukoralage, Dasun
%A Atapattu, Thushari
%A Thilakaratne, Menasha
%A Falkner, Katrina
%Y Xu, Dongfang
%Y Gonzalez-Hernandez, Graciela
%S Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F athukoralage-etal-2024-lt4sg
%X This paper presents our approaches for the SMM4H’24 Shared Task 5 on the binary classification of English tweets reporting children’s medical disorders. Our first approach involves fine-tuning a single RoBERTa-large model, while the second approach entails ensembling the results of three fine-tuned BERTweet-large models. We demonstrate that although both approaches exhibit identical performance on validation data, the BERTweet-large ensemble excels on test data. Our best-performing system achieves an F1-score of 0.938 on test data, outperforming the benchmark classifier by 1.18%.
%U https://aclanthology.org/2024.smm4h-1.9
%P 38-41
Markdown (Informal)
[LT4SG@SMM4H’24: Tweets Classification for Digital Epidemiology of Childhood Health Outcomes Using Pre-Trained Language Models](https://aclanthology.org/2024.smm4h-1.9) (Athukoralage et al., SMM4H-WS 2024)
ACL