@inproceedings{yang-etal-2024-optimising,
title = "Optimising {LLM}-Driven Machine Translation with Context-Aware Sliding Windows",
author = "Yang, Xinye and
Mu, Yida and
Bontcheva, Kalina and
Song, Xingyi",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Ninth Conference on Machine Translation",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.wmt-1.101",
pages = "1004--1010",
abstract = "This paper describes SheffieldGATE{'}s submission to WMT 2024 Chat Shared Translation Task. We participate in three language pairs: English-German, English-Dutch, and English-Portuguese (Brazil). In this work, we introduce a context-aware sliding window decoding method to track dependencies between chat messages. We fine-tune a large pre-trained language model based on the training data provided by the shared task Our experiments (i) compare the model performance between multilingual and bilingual fine-tuning and (ii) assess the impact of different window sizes. Our experimental results demonstrate that utilising contextual information yields superior performance in document-level translation compared to translating documents as isolated text segments, and that models fine-tuned with multilingual data perform better than those fine-tuned with bilingual data.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2024-optimising">
<titleInfo>
<title>Optimising LLM-Driven Machine Translation with Context-Aware Sliding Windows</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xinye</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yida</namePart>
<namePart type="family">Mu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalina</namePart>
<namePart type="family">Bontcheva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingyi</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Ninth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes SheffieldGATE’s submission to WMT 2024 Chat Shared Translation Task. We participate in three language pairs: English-German, English-Dutch, and English-Portuguese (Brazil). In this work, we introduce a context-aware sliding window decoding method to track dependencies between chat messages. We fine-tune a large pre-trained language model based on the training data provided by the shared task Our experiments (i) compare the model performance between multilingual and bilingual fine-tuning and (ii) assess the impact of different window sizes. Our experimental results demonstrate that utilising contextual information yields superior performance in document-level translation compared to translating documents as isolated text segments, and that models fine-tuned with multilingual data perform better than those fine-tuned with bilingual data.</abstract>
<identifier type="citekey">yang-etal-2024-optimising</identifier>
<location>
<url>https://aclanthology.org/2024.wmt-1.101</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>1004</start>
<end>1010</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Optimising LLM-Driven Machine Translation with Context-Aware Sliding Windows
%A Yang, Xinye
%A Mu, Yida
%A Bontcheva, Kalina
%A Song, Xingyi
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Ninth Conference on Machine Translation
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F yang-etal-2024-optimising
%X This paper describes SheffieldGATE’s submission to WMT 2024 Chat Shared Translation Task. We participate in three language pairs: English-German, English-Dutch, and English-Portuguese (Brazil). In this work, we introduce a context-aware sliding window decoding method to track dependencies between chat messages. We fine-tune a large pre-trained language model based on the training data provided by the shared task Our experiments (i) compare the model performance between multilingual and bilingual fine-tuning and (ii) assess the impact of different window sizes. Our experimental results demonstrate that utilising contextual information yields superior performance in document-level translation compared to translating documents as isolated text segments, and that models fine-tuned with multilingual data perform better than those fine-tuned with bilingual data.
%U https://aclanthology.org/2024.wmt-1.101
%P 1004-1010
Markdown (Informal)
[Optimising LLM-Driven Machine Translation with Context-Aware Sliding Windows](https://aclanthology.org/2024.wmt-1.101) (Yang et al., WMT 2024)
ACL