@inproceedings{liu-etal-2025-enhancing,
title = "Enhancing Multi-party Dialogue Discourse Parsing with Explanation Generation",
author = "Liu, Shannan and
Li, Peifeng and
Fan, Yaxin and
Zhu, Qiaoming",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.103/",
pages = "1531--1544",
abstract = "Multi-party dialogue discourse parsing is an important and challenging task in natural language processing (NLP). Previous studies struggled to fully understand the deep semantics of dialogues, especially when dealing with complex topic interleaving and ellipsis. To address the above issues, we propose a novel model DDPE (Dialogue Discourse Parsing with Explanations) to integrate external knowledge from Large Language Models (LLMs), which consists of three components, i.e., explanation generation, structural parsing, and contrastive learning. DDPE employs LLMs to generate explanatory and contrastive information about discourse structure, thereby providing additional reasoning cues that enhance the understanding of dialogue semantics. The experimental results on the two public datasets STAC and Molweni show that our DDPE significantly outperforms the state-of-the-art (SOTA) baselines."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2025-enhancing">
<titleInfo>
<title>Enhancing Multi-party Dialogue Discourse Parsing with Explanation Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shannan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peifeng</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaxin</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiaoming</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multi-party dialogue discourse parsing is an important and challenging task in natural language processing (NLP). Previous studies struggled to fully understand the deep semantics of dialogues, especially when dealing with complex topic interleaving and ellipsis. To address the above issues, we propose a novel model DDPE (Dialogue Discourse Parsing with Explanations) to integrate external knowledge from Large Language Models (LLMs), which consists of three components, i.e., explanation generation, structural parsing, and contrastive learning. DDPE employs LLMs to generate explanatory and contrastive information about discourse structure, thereby providing additional reasoning cues that enhance the understanding of dialogue semantics. The experimental results on the two public datasets STAC and Molweni show that our DDPE significantly outperforms the state-of-the-art (SOTA) baselines.</abstract>
<identifier type="citekey">liu-etal-2025-enhancing</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.103/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>1531</start>
<end>1544</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing Multi-party Dialogue Discourse Parsing with Explanation Generation
%A Liu, Shannan
%A Li, Peifeng
%A Fan, Yaxin
%A Zhu, Qiaoming
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F liu-etal-2025-enhancing
%X Multi-party dialogue discourse parsing is an important and challenging task in natural language processing (NLP). Previous studies struggled to fully understand the deep semantics of dialogues, especially when dealing with complex topic interleaving and ellipsis. To address the above issues, we propose a novel model DDPE (Dialogue Discourse Parsing with Explanations) to integrate external knowledge from Large Language Models (LLMs), which consists of three components, i.e., explanation generation, structural parsing, and contrastive learning. DDPE employs LLMs to generate explanatory and contrastive information about discourse structure, thereby providing additional reasoning cues that enhance the understanding of dialogue semantics. The experimental results on the two public datasets STAC and Molweni show that our DDPE significantly outperforms the state-of-the-art (SOTA) baselines.
%U https://aclanthology.org/2025.coling-main.103/
%P 1531-1544
Markdown (Informal)
[Enhancing Multi-party Dialogue Discourse Parsing with Explanation Generation](https://aclanthology.org/2025.coling-main.103/) (Liu et al., COLING 2025)
ACL