@inproceedings{yin-etal-2025-midlm,
title = "{MIDLM}: Multi-Intent Detection with Bidirectional Large Language Models",
author = "Yin, Shangjian and
Huang, Peijie and
Xu, Yuhong",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.179/",
pages = "2616--2625",
abstract = "Decoder-only Large Language Models (LLMs) have demonstrated exceptional performance in language generation, exhibiting broad capabilities across various tasks. However, the application to label-sensitive language understanding tasks remains challenging due to the limitations of their autoregressive architecture, which restricts the sharing of token information within a sentence. In this paper, we address the Multi-Intent Detection (MID) task and introduce MIDLM, a bidirectional LLM framework that incorporates intent number detection and multi-intent selection. This framework allows autoregressive LLMs to leverage bidirectional information awareness through post-training, eliminating the need for training the models from scratch. Comprehensive evaluations across 8 datasets show that MIDLM consistently outperforms both existing vanilla models and pretrained baselines, demonstrating its superior performance in the MID task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yin-etal-2025-midlm">
<titleInfo>
<title>MIDLM: Multi-Intent Detection with Bidirectional Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shangjian</namePart>
<namePart type="family">Yin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peijie</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuhong</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Decoder-only Large Language Models (LLMs) have demonstrated exceptional performance in language generation, exhibiting broad capabilities across various tasks. However, the application to label-sensitive language understanding tasks remains challenging due to the limitations of their autoregressive architecture, which restricts the sharing of token information within a sentence. In this paper, we address the Multi-Intent Detection (MID) task and introduce MIDLM, a bidirectional LLM framework that incorporates intent number detection and multi-intent selection. This framework allows autoregressive LLMs to leverage bidirectional information awareness through post-training, eliminating the need for training the models from scratch. Comprehensive evaluations across 8 datasets show that MIDLM consistently outperforms both existing vanilla models and pretrained baselines, demonstrating its superior performance in the MID task.</abstract>
<identifier type="citekey">yin-etal-2025-midlm</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.179/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>2616</start>
<end>2625</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MIDLM: Multi-Intent Detection with Bidirectional Large Language Models
%A Yin, Shangjian
%A Huang, Peijie
%A Xu, Yuhong
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F yin-etal-2025-midlm
%X Decoder-only Large Language Models (LLMs) have demonstrated exceptional performance in language generation, exhibiting broad capabilities across various tasks. However, the application to label-sensitive language understanding tasks remains challenging due to the limitations of their autoregressive architecture, which restricts the sharing of token information within a sentence. In this paper, we address the Multi-Intent Detection (MID) task and introduce MIDLM, a bidirectional LLM framework that incorporates intent number detection and multi-intent selection. This framework allows autoregressive LLMs to leverage bidirectional information awareness through post-training, eliminating the need for training the models from scratch. Comprehensive evaluations across 8 datasets show that MIDLM consistently outperforms both existing vanilla models and pretrained baselines, demonstrating its superior performance in the MID task.
%U https://aclanthology.org/2025.coling-main.179/
%P 2616-2625
Markdown (Informal)
[MIDLM: Multi-Intent Detection with Bidirectional Large Language Models](https://aclanthology.org/2025.coling-main.179/) (Yin et al., COLING 2025)
ACL