@inproceedings{le-etal-2025-optiprune,
title = "{O}pti{P}rune: Effective Pruning Approach for Every Target Sparsity",
author = "Le, Khang Nguyen and
Sato, Ryo and
Nakashima, Dai and
Suzuki, Takeshi and
Nguyen, Minh Le",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.243/",
pages = "3600--3612",
abstract = "Large language models (LLMs) have achieved notable success across various tasks but are hindered by their large size and high computational demands. Post-training pruning (PTP) offers a promising solution by reducing model size through parameter removal while preserving performance. However, current PTP methods perform optimally only within specific sparsity ranges. This paper presents two key findings: (1) Layerwise uniform sparsity is effective at low sparsity, while non-uniform sparsity excels at high levels; (2) Relative importance-based pruning works best at low sparsity, whereas Hessian-based weight reconstruction is superior at high sparsity. We design and conduct experiments to validate these findings. Based on these insights, we introduce OptiPrune, a robust pruning method effective across all sparsity levels. OptiPrune adapts non-uniform sparsity with adaptive deviation and employs a threshold to select the optimal pruning strategy. Empirical results across diverse datasets, architectures, and languages validate its performance and robustness. These findings provide valuable directions for future LLM pruning research. Our code and data are publicly available."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="le-etal-2025-optiprune">
<titleInfo>
<title>OptiPrune: Effective Pruning Approach for Every Target Sparsity</title>
</titleInfo>
<name type="personal">
<namePart type="given">Khang</namePart>
<namePart type="given">Nguyen</namePart>
<namePart type="family">Le</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryo</namePart>
<namePart type="family">Sato</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dai</namePart>
<namePart type="family">Nakashima</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Takeshi</namePart>
<namePart type="family">Suzuki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minh</namePart>
<namePart type="given">Le</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large language models (LLMs) have achieved notable success across various tasks but are hindered by their large size and high computational demands. Post-training pruning (PTP) offers a promising solution by reducing model size through parameter removal while preserving performance. However, current PTP methods perform optimally only within specific sparsity ranges. This paper presents two key findings: (1) Layerwise uniform sparsity is effective at low sparsity, while non-uniform sparsity excels at high levels; (2) Relative importance-based pruning works best at low sparsity, whereas Hessian-based weight reconstruction is superior at high sparsity. We design and conduct experiments to validate these findings. Based on these insights, we introduce OptiPrune, a robust pruning method effective across all sparsity levels. OptiPrune adapts non-uniform sparsity with adaptive deviation and employs a threshold to select the optimal pruning strategy. Empirical results across diverse datasets, architectures, and languages validate its performance and robustness. These findings provide valuable directions for future LLM pruning research. Our code and data are publicly available.</abstract>
<identifier type="citekey">le-etal-2025-optiprune</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.243/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>3600</start>
<end>3612</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T OptiPrune: Effective Pruning Approach for Every Target Sparsity
%A Le, Khang Nguyen
%A Sato, Ryo
%A Nakashima, Dai
%A Suzuki, Takeshi
%A Nguyen, Minh Le
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F le-etal-2025-optiprune
%X Large language models (LLMs) have achieved notable success across various tasks but are hindered by their large size and high computational demands. Post-training pruning (PTP) offers a promising solution by reducing model size through parameter removal while preserving performance. However, current PTP methods perform optimally only within specific sparsity ranges. This paper presents two key findings: (1) Layerwise uniform sparsity is effective at low sparsity, while non-uniform sparsity excels at high levels; (2) Relative importance-based pruning works best at low sparsity, whereas Hessian-based weight reconstruction is superior at high sparsity. We design and conduct experiments to validate these findings. Based on these insights, we introduce OptiPrune, a robust pruning method effective across all sparsity levels. OptiPrune adapts non-uniform sparsity with adaptive deviation and employs a threshold to select the optimal pruning strategy. Empirical results across diverse datasets, architectures, and languages validate its performance and robustness. These findings provide valuable directions for future LLM pruning research. Our code and data are publicly available.
%U https://aclanthology.org/2025.coling-main.243/
%P 3600-3612
Markdown (Informal)
[OptiPrune: Effective Pruning Approach for Every Target Sparsity](https://aclanthology.org/2025.coling-main.243/) (Le et al., COLING 2025)
ACL