@inproceedings{peng-etal-2025-rumor,
title = "Rumor Detection on Social Media with Temporal Propagation Structure Optimization",
author = "Peng, Xingyu and
Wu, Junran and
Liu, Ruomei and
Xu, Ke",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.261/",
pages = "3865--3878",
abstract = "Traditional methods for detecting rumors on social media primarily focus on analyzing textual content, often struggling to capture the complexity of online interactions. Recent research has shifted towards leveraging graph neural networks to model the hierarchical conversation structure that emerges during rumor propagation. However, these methods tend to overlook the temporal aspect of rumor propagation and may disregard potential noise within the propagation structure. In this paper, we propose a novel approach that incorporates temporal information by constructing a weighted propagation tree, where the weight of each edge represents the time interval between connected posts. Drawing upon the theory of structural entropy, we transform this tree into a coding tree. This transformation aims to preserve the essential structure of rumor propagation while reducing noise. Finally, we introduce a recursive neural network to learn from the coding tree for rumor veracity prediction. Experimental results on two common datasets demonstrate the superiority of our approach."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="peng-etal-2025-rumor">
<titleInfo>
<title>Rumor Detection on Social Media with Temporal Propagation Structure Optimization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xingyu</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junran</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruomei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ke</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Traditional methods for detecting rumors on social media primarily focus on analyzing textual content, often struggling to capture the complexity of online interactions. Recent research has shifted towards leveraging graph neural networks to model the hierarchical conversation structure that emerges during rumor propagation. However, these methods tend to overlook the temporal aspect of rumor propagation and may disregard potential noise within the propagation structure. In this paper, we propose a novel approach that incorporates temporal information by constructing a weighted propagation tree, where the weight of each edge represents the time interval between connected posts. Drawing upon the theory of structural entropy, we transform this tree into a coding tree. This transformation aims to preserve the essential structure of rumor propagation while reducing noise. Finally, we introduce a recursive neural network to learn from the coding tree for rumor veracity prediction. Experimental results on two common datasets demonstrate the superiority of our approach.</abstract>
<identifier type="citekey">peng-etal-2025-rumor</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.261/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>3865</start>
<end>3878</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Rumor Detection on Social Media with Temporal Propagation Structure Optimization
%A Peng, Xingyu
%A Wu, Junran
%A Liu, Ruomei
%A Xu, Ke
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F peng-etal-2025-rumor
%X Traditional methods for detecting rumors on social media primarily focus on analyzing textual content, often struggling to capture the complexity of online interactions. Recent research has shifted towards leveraging graph neural networks to model the hierarchical conversation structure that emerges during rumor propagation. However, these methods tend to overlook the temporal aspect of rumor propagation and may disregard potential noise within the propagation structure. In this paper, we propose a novel approach that incorporates temporal information by constructing a weighted propagation tree, where the weight of each edge represents the time interval between connected posts. Drawing upon the theory of structural entropy, we transform this tree into a coding tree. This transformation aims to preserve the essential structure of rumor propagation while reducing noise. Finally, we introduce a recursive neural network to learn from the coding tree for rumor veracity prediction. Experimental results on two common datasets demonstrate the superiority of our approach.
%U https://aclanthology.org/2025.coling-main.261/
%P 3865-3878
Markdown (Informal)
[Rumor Detection on Social Media with Temporal Propagation Structure Optimization](https://aclanthology.org/2025.coling-main.261/) (Peng et al., COLING 2025)
ACL