CateEA: Enhancing Entity Alignment via Implicit Category Supervision

Guan Dong Feng, Tao Ren, Jun Hu, Dan dan Wang


Abstract
Entity Alignment (EA) is essential for integrating Knowledge Graphs (KGs) by matching equivalent entities across diverse KGs. With the rise of multi-modal KGs, which emerged to better depict real-world KGs by integrating visual, textual, and structured data, Multi-Modal Entity Alignment (MMEA) has become crucial in enhancing EA. However, existing MMEA methods often neglect the inherent semantic category information of entities, limiting alignment precision and robustness. To address this, we propose Category-enhanced Entity Alignment (CateEA), which combines implicit entity category information into multi-modal representations. By generating pseudo-category labels from entity embeddings and integrating them into a multi-task learning framework, CateEA captures latent category semantics, enhancing entity representations. CateEA allows for adaptive adjustments of similarity measures, leading to improved alignment precision and robustness in multi-modal contexts. Experiments on benchmark datasets demonstrate that CateEA outperforms state-of-the-art methods in various settings.
Anthology ID:
2025.coling-main.399
Volume:
Proceedings of the 31st International Conference on Computational Linguistics
Month:
January
Year:
2025
Address:
Abu Dhabi, UAE
Editors:
Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, Steven Schockaert
Venue:
COLING
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
5975–5986
Language:
URL:
https://aclanthology.org/2025.coling-main.399/
DOI:
Bibkey:
Cite (ACL):
Guan Dong Feng, Tao Ren, Jun Hu, and Dan dan Wang. 2025. CateEA: Enhancing Entity Alignment via Implicit Category Supervision. In Proceedings of the 31st International Conference on Computational Linguistics, pages 5975–5986, Abu Dhabi, UAE. Association for Computational Linguistics.
Cite (Informal):
CateEA: Enhancing Entity Alignment via Implicit Category Supervision (Feng et al., COLING 2025)
Copy Citation:
PDF:
https://aclanthology.org/2025.coling-main.399.pdf