@inproceedings{gong-etal-2025-graph,
title = "Graph Representation Learning in Hyperbolic Space via Dual-Masked",
author = "Gong, Rui and
Jiang, Zuyun and
Zha, Daren",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.43/",
pages = "637--646",
abstract = "Graph representation learning (GRL) in hyperbolic space has gradually emerged as a promising approach. Meanwhile, masking and reconstruction-based (MR-based) methods lead to state-of-the-art self-supervised graph representation. However, existing MR-based methods do not fully consider deep node and structural information. Inspired by the recent active and emerging field of self-supervised learning, we propose a novel node and edge dual-masked self-supervised graph representation learning framework in hyperbolic space, named HDM-GAE. We have designed a graph dual-masked module and a hyperbolic structural self-attention encoder module to mask nodes or edges and perform node aggregation within hyperbolic space, respectively. Comprehensive experiments and ablation studies on real-world multi-category datasets, demonstrate the superiority of our method in downstream tasks such as node classification and link prediction."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gong-etal-2025-graph">
<titleInfo>
<title>Graph Representation Learning in Hyperbolic Space via Dual-Masked</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Gong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zuyun</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daren</namePart>
<namePart type="family">Zha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Graph representation learning (GRL) in hyperbolic space has gradually emerged as a promising approach. Meanwhile, masking and reconstruction-based (MR-based) methods lead to state-of-the-art self-supervised graph representation. However, existing MR-based methods do not fully consider deep node and structural information. Inspired by the recent active and emerging field of self-supervised learning, we propose a novel node and edge dual-masked self-supervised graph representation learning framework in hyperbolic space, named HDM-GAE. We have designed a graph dual-masked module and a hyperbolic structural self-attention encoder module to mask nodes or edges and perform node aggregation within hyperbolic space, respectively. Comprehensive experiments and ablation studies on real-world multi-category datasets, demonstrate the superiority of our method in downstream tasks such as node classification and link prediction.</abstract>
<identifier type="citekey">gong-etal-2025-graph</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.43/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>637</start>
<end>646</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Graph Representation Learning in Hyperbolic Space via Dual-Masked
%A Gong, Rui
%A Jiang, Zuyun
%A Zha, Daren
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F gong-etal-2025-graph
%X Graph representation learning (GRL) in hyperbolic space has gradually emerged as a promising approach. Meanwhile, masking and reconstruction-based (MR-based) methods lead to state-of-the-art self-supervised graph representation. However, existing MR-based methods do not fully consider deep node and structural information. Inspired by the recent active and emerging field of self-supervised learning, we propose a novel node and edge dual-masked self-supervised graph representation learning framework in hyperbolic space, named HDM-GAE. We have designed a graph dual-masked module and a hyperbolic structural self-attention encoder module to mask nodes or edges and perform node aggregation within hyperbolic space, respectively. Comprehensive experiments and ablation studies on real-world multi-category datasets, demonstrate the superiority of our method in downstream tasks such as node classification and link prediction.
%U https://aclanthology.org/2025.coling-main.43/
%P 637-646
Markdown (Informal)
[Graph Representation Learning in Hyperbolic Space via Dual-Masked](https://aclanthology.org/2025.coling-main.43/) (Gong et al., COLING 2025)
ACL