@inproceedings{fan-etal-2025-cross,
title = "Cross-lingual Social Misinformation Detector based on Hierarchical Mixture-of-Experts Adapter",
author = "Fan, Haofang and
Hu, Xiran and
Zhao, Geng",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.484/",
pages = "7253--7265",
abstract = "The spread of social misinformation has been a global concern, particularly affecting non-native speaker users who are more susceptible to misinformation on foreign social media platforms. In light of this, this study focuses on mitigating the challenges faced by social misinformation detectors in quickly regaining capability after crossing linguistic borders, especially for non-native users with only monolingual social media histories. By integrating sentiment analysis as an auxiliary, less sensitive task, we transform the challenging cross-lingual transfer into a manageable multi-task framework. Then, we propose HierMoE-Adpt, a novel, cost-effective parameter efficient finetuning method based on hierarchical mixture-of-experts adaptation, to enhance cross-lingual social misinformation detection. HierMoE-Adpt includes a hierarchical routing strategy and an expert-mask mechanism, effectively merge knowledge about the understanding posts in new language and misinformation detection capabilities, contributing to recover the performance of personal misinformation detectors in sync with the dynamics of personal international travel."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fan-etal-2025-cross">
<titleInfo>
<title>Cross-lingual Social Misinformation Detector based on Hierarchical Mixture-of-Experts Adapter</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haofang</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiran</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Geng</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The spread of social misinformation has been a global concern, particularly affecting non-native speaker users who are more susceptible to misinformation on foreign social media platforms. In light of this, this study focuses on mitigating the challenges faced by social misinformation detectors in quickly regaining capability after crossing linguistic borders, especially for non-native users with only monolingual social media histories. By integrating sentiment analysis as an auxiliary, less sensitive task, we transform the challenging cross-lingual transfer into a manageable multi-task framework. Then, we propose HierMoE-Adpt, a novel, cost-effective parameter efficient finetuning method based on hierarchical mixture-of-experts adaptation, to enhance cross-lingual social misinformation detection. HierMoE-Adpt includes a hierarchical routing strategy and an expert-mask mechanism, effectively merge knowledge about the understanding posts in new language and misinformation detection capabilities, contributing to recover the performance of personal misinformation detectors in sync with the dynamics of personal international travel.</abstract>
<identifier type="citekey">fan-etal-2025-cross</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.484/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>7253</start>
<end>7265</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-lingual Social Misinformation Detector based on Hierarchical Mixture-of-Experts Adapter
%A Fan, Haofang
%A Hu, Xiran
%A Zhao, Geng
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F fan-etal-2025-cross
%X The spread of social misinformation has been a global concern, particularly affecting non-native speaker users who are more susceptible to misinformation on foreign social media platforms. In light of this, this study focuses on mitigating the challenges faced by social misinformation detectors in quickly regaining capability after crossing linguistic borders, especially for non-native users with only monolingual social media histories. By integrating sentiment analysis as an auxiliary, less sensitive task, we transform the challenging cross-lingual transfer into a manageable multi-task framework. Then, we propose HierMoE-Adpt, a novel, cost-effective parameter efficient finetuning method based on hierarchical mixture-of-experts adaptation, to enhance cross-lingual social misinformation detection. HierMoE-Adpt includes a hierarchical routing strategy and an expert-mask mechanism, effectively merge knowledge about the understanding posts in new language and misinformation detection capabilities, contributing to recover the performance of personal misinformation detectors in sync with the dynamics of personal international travel.
%U https://aclanthology.org/2025.coling-main.484/
%P 7253-7265
Markdown (Informal)
[Cross-lingual Social Misinformation Detector based on Hierarchical Mixture-of-Experts Adapter](https://aclanthology.org/2025.coling-main.484/) (Fan et al., COLING 2025)
ACL