@inproceedings{li-etal-2025-cent,
title = "Re-Cent: A Relation-Centric Framework for Joint Zero-Shot Relation Triplet Extraction",
author = "Li, Zehan and
Zhang, Fu and
Lyu, Kailun and
Cheng, Jingwei and
Peng, Tianyue",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.491/",
pages = "7344--7354",
abstract = "Zero-shot Relation Triplet Extraction (ZSRTE) aims to extract triplets from the context where the relation patterns are unseen during training. Due to the inherent challenges of the ZSRTE task, existing extractive ZSRTE methods often decompose it into named entity recognition and relation classification, which overlooks the interdependence of two tasks and may introduce error propagation. Motivated by the intuition that crucial entity attributes might be implicit in the relation labels, we propose a Relation-Centric joint ZSRTE method named Re-Cent. This approach uses minimal information, specifically unseen relation labels, to extract triplets in one go through a unified model. We develop two span-based extractors to identify the subjects and objects corresponding to relation labels, forming span-pairs. Additionally, we introduce a relation-based correction mechanism that further refines the triplets by calculating the relevance between span-pairs and relation labels. Experiments demonstrate that Re-Cent achieves state-of-the-art performance with fewer parameters and does not rely on synthetic data or manual labor."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2025-cent">
<titleInfo>
<title>Re-Cent: A Relation-Centric Framework for Joint Zero-Shot Relation Triplet Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zehan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kailun</namePart>
<namePart type="family">Lyu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingwei</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianyue</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Zero-shot Relation Triplet Extraction (ZSRTE) aims to extract triplets from the context where the relation patterns are unseen during training. Due to the inherent challenges of the ZSRTE task, existing extractive ZSRTE methods often decompose it into named entity recognition and relation classification, which overlooks the interdependence of two tasks and may introduce error propagation. Motivated by the intuition that crucial entity attributes might be implicit in the relation labels, we propose a Relation-Centric joint ZSRTE method named Re-Cent. This approach uses minimal information, specifically unseen relation labels, to extract triplets in one go through a unified model. We develop two span-based extractors to identify the subjects and objects corresponding to relation labels, forming span-pairs. Additionally, we introduce a relation-based correction mechanism that further refines the triplets by calculating the relevance between span-pairs and relation labels. Experiments demonstrate that Re-Cent achieves state-of-the-art performance with fewer parameters and does not rely on synthetic data or manual labor.</abstract>
<identifier type="citekey">li-etal-2025-cent</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.491/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>7344</start>
<end>7354</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Re-Cent: A Relation-Centric Framework for Joint Zero-Shot Relation Triplet Extraction
%A Li, Zehan
%A Zhang, Fu
%A Lyu, Kailun
%A Cheng, Jingwei
%A Peng, Tianyue
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F li-etal-2025-cent
%X Zero-shot Relation Triplet Extraction (ZSRTE) aims to extract triplets from the context where the relation patterns are unseen during training. Due to the inherent challenges of the ZSRTE task, existing extractive ZSRTE methods often decompose it into named entity recognition and relation classification, which overlooks the interdependence of two tasks and may introduce error propagation. Motivated by the intuition that crucial entity attributes might be implicit in the relation labels, we propose a Relation-Centric joint ZSRTE method named Re-Cent. This approach uses minimal information, specifically unseen relation labels, to extract triplets in one go through a unified model. We develop two span-based extractors to identify the subjects and objects corresponding to relation labels, forming span-pairs. Additionally, we introduce a relation-based correction mechanism that further refines the triplets by calculating the relevance between span-pairs and relation labels. Experiments demonstrate that Re-Cent achieves state-of-the-art performance with fewer parameters and does not rely on synthetic data or manual labor.
%U https://aclanthology.org/2025.coling-main.491/
%P 7344-7354
Markdown (Informal)
[Re-Cent: A Relation-Centric Framework for Joint Zero-Shot Relation Triplet Extraction](https://aclanthology.org/2025.coling-main.491/) (Li et al., COLING 2025)
ACL