@inproceedings{chen-etal-2025-comif,
title = "{C}o{MIF}: Modeling of Complex Multiple Interaction Factors for Conversation Generation",
author = "Chen, Yuxuan and
Wei, Wei and
Fan, Shixuan and
Xu, Kaihe and
Chen, Dangyang",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.492/",
pages = "7355--7366",
abstract = "Highly realistic human-machine interaction is challenging for open-domain dialogue systems. Although existing methods have achieved notable progress by leveraging various interaction factors (e.g., emotion, personality, topic) for delivering human-like (e.g., empathetic, personalized and semantically-consistent) responses, they typically model such factor alone and thus easily suffer from low-quality response generation issue. We attribute this limitation to the neglect of implicit-correlations among factors. Furthermore, different factors may alternately dominate token-level response generation during decoding, making it harder to generate high-quality responses by applying various factors at the sentence level. To address the issue, we present a unified response generation framework, which is capable of simultaneously modeling Complex Multiple Interaction Factors (named CoMIF) to generate human-like conversations. To model the implicit correlations among factors, CoMIF first employ a \textit{dynamic perception} module to construct a directed \textit{collaborative}-graph to jointly learn the dynamics over time of each factor, as well as the cross-dependencies among them. Additionally, we also design a scalable post-adaptation module to introduce token-level factor signals to generate more human-like responses with appropriately multiple factors. Extensive experiments over multiple datasets demonstrate that the proposed method achieves the superior performance in generating more human-like responses with appropriate multiple-factors, as compared to the state-of-the-art methods."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2025-comif">
<titleInfo>
<title>CoMIF: Modeling of Complex Multiple Interaction Factors for Conversation Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuxuan</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shixuan</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kaihe</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dangyang</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Highly realistic human-machine interaction is challenging for open-domain dialogue systems. Although existing methods have achieved notable progress by leveraging various interaction factors (e.g., emotion, personality, topic) for delivering human-like (e.g., empathetic, personalized and semantically-consistent) responses, they typically model such factor alone and thus easily suffer from low-quality response generation issue. We attribute this limitation to the neglect of implicit-correlations among factors. Furthermore, different factors may alternately dominate token-level response generation during decoding, making it harder to generate high-quality responses by applying various factors at the sentence level. To address the issue, we present a unified response generation framework, which is capable of simultaneously modeling Complex Multiple Interaction Factors (named CoMIF) to generate human-like conversations. To model the implicit correlations among factors, CoMIF first employ a dynamic perception module to construct a directed collaborative-graph to jointly learn the dynamics over time of each factor, as well as the cross-dependencies among them. Additionally, we also design a scalable post-adaptation module to introduce token-level factor signals to generate more human-like responses with appropriately multiple factors. Extensive experiments over multiple datasets demonstrate that the proposed method achieves the superior performance in generating more human-like responses with appropriate multiple-factors, as compared to the state-of-the-art methods.</abstract>
<identifier type="citekey">chen-etal-2025-comif</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.492/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>7355</start>
<end>7366</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CoMIF: Modeling of Complex Multiple Interaction Factors for Conversation Generation
%A Chen, Yuxuan
%A Wei, Wei
%A Fan, Shixuan
%A Xu, Kaihe
%A Chen, Dangyang
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F chen-etal-2025-comif
%X Highly realistic human-machine interaction is challenging for open-domain dialogue systems. Although existing methods have achieved notable progress by leveraging various interaction factors (e.g., emotion, personality, topic) for delivering human-like (e.g., empathetic, personalized and semantically-consistent) responses, they typically model such factor alone and thus easily suffer from low-quality response generation issue. We attribute this limitation to the neglect of implicit-correlations among factors. Furthermore, different factors may alternately dominate token-level response generation during decoding, making it harder to generate high-quality responses by applying various factors at the sentence level. To address the issue, we present a unified response generation framework, which is capable of simultaneously modeling Complex Multiple Interaction Factors (named CoMIF) to generate human-like conversations. To model the implicit correlations among factors, CoMIF first employ a dynamic perception module to construct a directed collaborative-graph to jointly learn the dynamics over time of each factor, as well as the cross-dependencies among them. Additionally, we also design a scalable post-adaptation module to introduce token-level factor signals to generate more human-like responses with appropriately multiple factors. Extensive experiments over multiple datasets demonstrate that the proposed method achieves the superior performance in generating more human-like responses with appropriate multiple-factors, as compared to the state-of-the-art methods.
%U https://aclanthology.org/2025.coling-main.492/
%P 7355-7366
Markdown (Informal)
[CoMIF: Modeling of Complex Multiple Interaction Factors for Conversation Generation](https://aclanthology.org/2025.coling-main.492/) (Chen et al., COLING 2025)
ACL