@inproceedings{lin-etal-2025-reasoning,
title = "Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning",
author = "Lin, Yukang and
Zhong, Bingchen and
Jiang, Shuoran and
Siebert, Joanna and
Chen, Qingcai",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.651/",
pages = "9737--9759",
abstract = "Large language models (LLMs) have exhibited remarkable few-shot learning capabilities and unified the paradigm of NLP tasks through the in-context learning (ICL) technique. Despite the success of ICL, the quality of the exemplar demonstrations can significantly influence the LLM`s performance. Existing exemplar selection methods mainly focus on the semantic similarity between queries and candidate exemplars. On the other hand, the logical connections between reasoning steps can also be beneficial to depict the problem-solving process. This paper proposes a novel method named Reasoning Graph-enhanced Exemplar Retrieval (RGER). RGER first queries LLM to generate an initial response and then expresses intermediate problem-solving steps to a graph structure. After that, it employs a graph kernel to select exemplars with semantic and structural similarity. Extensive experiments demonstrate the structural relationship is helpful to the alignment of queries and candidate exemplars. The efficacy of RGER on mathematics and logical reasoning tasks showcases its superiority over state-of-the-art retrieval-based approaches."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lin-etal-2025-reasoning">
<titleInfo>
<title>Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yukang</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bingchen</namePart>
<namePart type="family">Zhong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuoran</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joanna</namePart>
<namePart type="family">Siebert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qingcai</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large language models (LLMs) have exhibited remarkable few-shot learning capabilities and unified the paradigm of NLP tasks through the in-context learning (ICL) technique. Despite the success of ICL, the quality of the exemplar demonstrations can significantly influence the LLM‘s performance. Existing exemplar selection methods mainly focus on the semantic similarity between queries and candidate exemplars. On the other hand, the logical connections between reasoning steps can also be beneficial to depict the problem-solving process. This paper proposes a novel method named Reasoning Graph-enhanced Exemplar Retrieval (RGER). RGER first queries LLM to generate an initial response and then expresses intermediate problem-solving steps to a graph structure. After that, it employs a graph kernel to select exemplars with semantic and structural similarity. Extensive experiments demonstrate the structural relationship is helpful to the alignment of queries and candidate exemplars. The efficacy of RGER on mathematics and logical reasoning tasks showcases its superiority over state-of-the-art retrieval-based approaches.</abstract>
<identifier type="citekey">lin-etal-2025-reasoning</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.651/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>9737</start>
<end>9759</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning
%A Lin, Yukang
%A Zhong, Bingchen
%A Jiang, Shuoran
%A Siebert, Joanna
%A Chen, Qingcai
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F lin-etal-2025-reasoning
%X Large language models (LLMs) have exhibited remarkable few-shot learning capabilities and unified the paradigm of NLP tasks through the in-context learning (ICL) technique. Despite the success of ICL, the quality of the exemplar demonstrations can significantly influence the LLM‘s performance. Existing exemplar selection methods mainly focus on the semantic similarity between queries and candidate exemplars. On the other hand, the logical connections between reasoning steps can also be beneficial to depict the problem-solving process. This paper proposes a novel method named Reasoning Graph-enhanced Exemplar Retrieval (RGER). RGER first queries LLM to generate an initial response and then expresses intermediate problem-solving steps to a graph structure. After that, it employs a graph kernel to select exemplars with semantic and structural similarity. Extensive experiments demonstrate the structural relationship is helpful to the alignment of queries and candidate exemplars. The efficacy of RGER on mathematics and logical reasoning tasks showcases its superiority over state-of-the-art retrieval-based approaches.
%U https://aclanthology.org/2025.coling-main.651/
%P 9737-9759
Markdown (Informal)
[Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning](https://aclanthology.org/2025.coling-main.651/) (Lin et al., COLING 2025)
ACL