@inproceedings{li-etal-2025-examine,
title = "Re-Examine Distantly Supervised {NER}: A New Benchmark and a Simple Approach",
author = "Li, Yuepei and
Zhou, Kang and
Qiao, Qiao and
Wang, Qing and
Li, Qi",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.727/",
pages = "10940--10959",
abstract = "Distantly-Supervised Named Entity Recognition (DS-NER) uses knowledge bases or dictionaries for annotations, reducing manual efforts but rely on large human labeled validation set. In this paper, we introduce a real-life DS-NER dataset, QTL, where the training data is annotated using domain dictionaries and the test data is annotated by domain experts. This dataset has a small validation set, reflecting real-life scenarios. Existing DS-NER approaches fail when applied to QTL, which motivate us to re-examine existing DS-NER approaches. We found that many of them rely on large validation sets and some used test set for tuning inappropriately. To solve this issue, we proposed a new approach, token-level Curriculum-based Positive-Unlabeled Learning (CuPUL), which uses curriculum learning to order training samples from easy to hard. This method stabilizes training, making it robust and effective on small validation sets. CuPUL also addresses false negative issues using the Positive-Unlabeled learning paradigm, demonstrating improved performance in real-life applications."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2025-examine">
<titleInfo>
<title>Re-Examine Distantly Supervised NER: A New Benchmark and a Simple Approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuepei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kang</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiao</namePart>
<namePart type="family">Qiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qing</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Distantly-Supervised Named Entity Recognition (DS-NER) uses knowledge bases or dictionaries for annotations, reducing manual efforts but rely on large human labeled validation set. In this paper, we introduce a real-life DS-NER dataset, QTL, where the training data is annotated using domain dictionaries and the test data is annotated by domain experts. This dataset has a small validation set, reflecting real-life scenarios. Existing DS-NER approaches fail when applied to QTL, which motivate us to re-examine existing DS-NER approaches. We found that many of them rely on large validation sets and some used test set for tuning inappropriately. To solve this issue, we proposed a new approach, token-level Curriculum-based Positive-Unlabeled Learning (CuPUL), which uses curriculum learning to order training samples from easy to hard. This method stabilizes training, making it robust and effective on small validation sets. CuPUL also addresses false negative issues using the Positive-Unlabeled learning paradigm, demonstrating improved performance in real-life applications.</abstract>
<identifier type="citekey">li-etal-2025-examine</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.727/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>10940</start>
<end>10959</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Re-Examine Distantly Supervised NER: A New Benchmark and a Simple Approach
%A Li, Yuepei
%A Zhou, Kang
%A Qiao, Qiao
%A Wang, Qing
%A Li, Qi
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F li-etal-2025-examine
%X Distantly-Supervised Named Entity Recognition (DS-NER) uses knowledge bases or dictionaries for annotations, reducing manual efforts but rely on large human labeled validation set. In this paper, we introduce a real-life DS-NER dataset, QTL, where the training data is annotated using domain dictionaries and the test data is annotated by domain experts. This dataset has a small validation set, reflecting real-life scenarios. Existing DS-NER approaches fail when applied to QTL, which motivate us to re-examine existing DS-NER approaches. We found that many of them rely on large validation sets and some used test set for tuning inappropriately. To solve this issue, we proposed a new approach, token-level Curriculum-based Positive-Unlabeled Learning (CuPUL), which uses curriculum learning to order training samples from easy to hard. This method stabilizes training, making it robust and effective on small validation sets. CuPUL also addresses false negative issues using the Positive-Unlabeled learning paradigm, demonstrating improved performance in real-life applications.
%U https://aclanthology.org/2025.coling-main.727/
%P 10940-10959
Markdown (Informal)
[Re-Examine Distantly Supervised NER: A New Benchmark and a Simple Approach](https://aclanthology.org/2025.coling-main.727/) (Li et al., COLING 2025)
ACL