@inproceedings{matsubayashi-inui-2018-distance,
title = "Distance-Free Modeling of Multi-Predicate Interactions in End-to-End {J}apanese Predicate-Argument Structure Analysis",
author = "Matsubayashi, Yuichiroh and
Inui, Kentaro",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1009/",
pages = "94--106",
abstract = "Capturing interactions among multiple predicate-argument structures (PASs) is a crucial issue in the task of analyzing PAS in Japanese. In this paper, we propose new Japanese PAS analysis models that integrate the label prediction information of arguments in multiple PASs by extending the input and last layers of a standard deep bidirectional recurrent neural network (bi-RNN) model. In these models, using the mechanisms of pooling and attention, we aim to directly capture the potential interactions among multiple PASs, without being disturbed by the word order and distance. Our experiments show that the proposed models improve the prediction accuracy specifically for cases where the predicate and argument are in an indirect dependency relation and achieve a new state of the art in the overall $F_1$ on a standard benchmark corpus."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="matsubayashi-inui-2018-distance">
<titleInfo>
<title>Distance-Free Modeling of Multi-Predicate Interactions in End-to-End Japanese Predicate-Argument Structure Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuichiroh</namePart>
<namePart type="family">Matsubayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Capturing interactions among multiple predicate-argument structures (PASs) is a crucial issue in the task of analyzing PAS in Japanese. In this paper, we propose new Japanese PAS analysis models that integrate the label prediction information of arguments in multiple PASs by extending the input and last layers of a standard deep bidirectional recurrent neural network (bi-RNN) model. In these models, using the mechanisms of pooling and attention, we aim to directly capture the potential interactions among multiple PASs, without being disturbed by the word order and distance. Our experiments show that the proposed models improve the prediction accuracy specifically for cases where the predicate and argument are in an indirect dependency relation and achieve a new state of the art in the overall F₁ on a standard benchmark corpus.</abstract>
<identifier type="citekey">matsubayashi-inui-2018-distance</identifier>
<location>
<url>https://aclanthology.org/C18-1009/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>94</start>
<end>106</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Distance-Free Modeling of Multi-Predicate Interactions in End-to-End Japanese Predicate-Argument Structure Analysis
%A Matsubayashi, Yuichiroh
%A Inui, Kentaro
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F matsubayashi-inui-2018-distance
%X Capturing interactions among multiple predicate-argument structures (PASs) is a crucial issue in the task of analyzing PAS in Japanese. In this paper, we propose new Japanese PAS analysis models that integrate the label prediction information of arguments in multiple PASs by extending the input and last layers of a standard deep bidirectional recurrent neural network (bi-RNN) model. In these models, using the mechanisms of pooling and attention, we aim to directly capture the potential interactions among multiple PASs, without being disturbed by the word order and distance. Our experiments show that the proposed models improve the prediction accuracy specifically for cases where the predicate and argument are in an indirect dependency relation and achieve a new state of the art in the overall F₁ on a standard benchmark corpus.
%U https://aclanthology.org/C18-1009/
%P 94-106
Markdown (Informal)
[Distance-Free Modeling of Multi-Predicate Interactions in End-to-End Japanese Predicate-Argument Structure Analysis](https://aclanthology.org/C18-1009/) (Matsubayashi & Inui, COLING 2018)
ACL