@inproceedings{wu-etal-2018-hl,
title = "{HL}-{E}nc{D}ec: A Hybrid-Level Encoder-Decoder for Neural Response Generation",
author = "Wu, Sixing and
Zhang, Dawei and
Li, Ying and
Xie, Xing and
Wu, Zhonghai",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1072/",
pages = "845--856",
abstract = "Recent years have witnessed a surge of interest on response generation for neural conversation systems. Most existing models are implemented by following the Encoder-Decoder framework and operate sentences of conversations at word-level. The word-level model is suffering from the Unknown Words Issue and the Preference Issue, which seriously impact the quality of generated responses, for example, generated responses may become irrelevant or too general (i.e. safe responses). To address these issues, this paper proposes a hybrid-level Encoder-Decoder model (HL-EncDec), which not only utilizes the word-level features but also character-level features. We conduct several experiments to evaluate HL-EncDec on a Chinese corpus, experimental results show our model significantly outperforms other non-word-level models in automatic metrics and human annotations and is able to generate more informative responses. We also conduct experiments with a small-scale English dataset to show the generalization ability."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wu-etal-2018-hl">
<titleInfo>
<title>HL-EncDec: A Hybrid-Level Encoder-Decoder for Neural Response Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sixing</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dawei</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ying</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xing</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhonghai</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent years have witnessed a surge of interest on response generation for neural conversation systems. Most existing models are implemented by following the Encoder-Decoder framework and operate sentences of conversations at word-level. The word-level model is suffering from the Unknown Words Issue and the Preference Issue, which seriously impact the quality of generated responses, for example, generated responses may become irrelevant or too general (i.e. safe responses). To address these issues, this paper proposes a hybrid-level Encoder-Decoder model (HL-EncDec), which not only utilizes the word-level features but also character-level features. We conduct several experiments to evaluate HL-EncDec on a Chinese corpus, experimental results show our model significantly outperforms other non-word-level models in automatic metrics and human annotations and is able to generate more informative responses. We also conduct experiments with a small-scale English dataset to show the generalization ability.</abstract>
<identifier type="citekey">wu-etal-2018-hl</identifier>
<location>
<url>https://aclanthology.org/C18-1072/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>845</start>
<end>856</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HL-EncDec: A Hybrid-Level Encoder-Decoder for Neural Response Generation
%A Wu, Sixing
%A Zhang, Dawei
%A Li, Ying
%A Xie, Xing
%A Wu, Zhonghai
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F wu-etal-2018-hl
%X Recent years have witnessed a surge of interest on response generation for neural conversation systems. Most existing models are implemented by following the Encoder-Decoder framework and operate sentences of conversations at word-level. The word-level model is suffering from the Unknown Words Issue and the Preference Issue, which seriously impact the quality of generated responses, for example, generated responses may become irrelevant or too general (i.e. safe responses). To address these issues, this paper proposes a hybrid-level Encoder-Decoder model (HL-EncDec), which not only utilizes the word-level features but also character-level features. We conduct several experiments to evaluate HL-EncDec on a Chinese corpus, experimental results show our model significantly outperforms other non-word-level models in automatic metrics and human annotations and is able to generate more informative responses. We also conduct experiments with a small-scale English dataset to show the generalization ability.
%U https://aclanthology.org/C18-1072/
%P 845-856
Markdown (Informal)
[HL-EncDec: A Hybrid-Level Encoder-Decoder for Neural Response Generation](https://aclanthology.org/C18-1072/) (Wu et al., COLING 2018)
ACL