@inproceedings{sanu-etal-2017-word,
title = "Word Embeddings based on Fixed-Size Ordinally Forgetting Encoding",
author = "Sanu, Joseph and
Xu, Mingbin and
Jiang, Hui and
Liu, Quan",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1031",
doi = "10.18653/v1/D17-1031",
pages = "310--315",
abstract = "In this paper, we propose to learn word embeddings based on the recent fixed-size ordinally forgetting encoding (FOFE) method, which can almost uniquely encode any variable-length sequence into a fixed-size representation. We use FOFE to fully encode the left and right context of each word in a corpus to construct a novel word-context matrix, which is further weighted and factorized using truncated SVD to generate low-dimension word embedding vectors. We evaluate this alternate method in encoding word-context statistics and show the new FOFE method has a notable effect on the resulting word embeddings. Experimental results on several popular word similarity tasks have demonstrated that the proposed method outperforms other SVD models that use canonical count based techniques to generate word context matrices.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sanu-etal-2017-word">
<titleInfo>
<title>Word Embeddings based on Fixed-Size Ordinally Forgetting Encoding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Sanu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mingbin</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hui</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Quan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose to learn word embeddings based on the recent fixed-size ordinally forgetting encoding (FOFE) method, which can almost uniquely encode any variable-length sequence into a fixed-size representation. We use FOFE to fully encode the left and right context of each word in a corpus to construct a novel word-context matrix, which is further weighted and factorized using truncated SVD to generate low-dimension word embedding vectors. We evaluate this alternate method in encoding word-context statistics and show the new FOFE method has a notable effect on the resulting word embeddings. Experimental results on several popular word similarity tasks have demonstrated that the proposed method outperforms other SVD models that use canonical count based techniques to generate word context matrices.</abstract>
<identifier type="citekey">sanu-etal-2017-word</identifier>
<identifier type="doi">10.18653/v1/D17-1031</identifier>
<location>
<url>https://aclanthology.org/D17-1031</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>310</start>
<end>315</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Word Embeddings based on Fixed-Size Ordinally Forgetting Encoding
%A Sanu, Joseph
%A Xu, Mingbin
%A Jiang, Hui
%A Liu, Quan
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F sanu-etal-2017-word
%X In this paper, we propose to learn word embeddings based on the recent fixed-size ordinally forgetting encoding (FOFE) method, which can almost uniquely encode any variable-length sequence into a fixed-size representation. We use FOFE to fully encode the left and right context of each word in a corpus to construct a novel word-context matrix, which is further weighted and factorized using truncated SVD to generate low-dimension word embedding vectors. We evaluate this alternate method in encoding word-context statistics and show the new FOFE method has a notable effect on the resulting word embeddings. Experimental results on several popular word similarity tasks have demonstrated that the proposed method outperforms other SVD models that use canonical count based techniques to generate word context matrices.
%R 10.18653/v1/D17-1031
%U https://aclanthology.org/D17-1031
%U https://doi.org/10.18653/v1/D17-1031
%P 310-315
Markdown (Informal)
[Word Embeddings based on Fixed-Size Ordinally Forgetting Encoding](https://aclanthology.org/D17-1031) (Sanu et al., EMNLP 2017)
ACL