@inproceedings{yanaka-etal-2017-determining,
title = "Determining Semantic Textual Similarity using Natural Deduction Proofs",
author = "Yanaka, Hitomi and
Mineshima, Koji and
Mart{\'\i}nez-G{\'o}mez, Pascual and
Bekki, Daisuke",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1071",
doi = "10.18653/v1/D17-1071",
pages = "681--691",
abstract = "Determining semantic textual similarity is a core research subject in natural language processing. Since vector-based models for sentence representation often use shallow information, capturing accurate semantics is difficult. By contrast, logical semantic representations capture deeper levels of sentence semantics, but their symbolic nature does not offer graded notions of textual similarity. We propose a method for determining semantic textual similarity by combining shallow features with features extracted from natural deduction proofs of bidirectional entailment relations between sentence pairs. For the natural deduction proofs, we use ccg2lambda, a higher-order automatic inference system, which converts Combinatory Categorial Grammar (CCG) derivation trees into semantic representations and conducts natural deduction proofs. Experiments show that our system was able to outperform other logic-based systems and that features derived from the proofs are effective for learning textual similarity.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yanaka-etal-2017-determining">
<titleInfo>
<title>Determining Semantic Textual Similarity using Natural Deduction Proofs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hitomi</namePart>
<namePart type="family">Yanaka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koji</namePart>
<namePart type="family">Mineshima</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pascual</namePart>
<namePart type="family">Martínez-Gómez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daisuke</namePart>
<namePart type="family">Bekki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Determining semantic textual similarity is a core research subject in natural language processing. Since vector-based models for sentence representation often use shallow information, capturing accurate semantics is difficult. By contrast, logical semantic representations capture deeper levels of sentence semantics, but their symbolic nature does not offer graded notions of textual similarity. We propose a method for determining semantic textual similarity by combining shallow features with features extracted from natural deduction proofs of bidirectional entailment relations between sentence pairs. For the natural deduction proofs, we use ccg2lambda, a higher-order automatic inference system, which converts Combinatory Categorial Grammar (CCG) derivation trees into semantic representations and conducts natural deduction proofs. Experiments show that our system was able to outperform other logic-based systems and that features derived from the proofs are effective for learning textual similarity.</abstract>
<identifier type="citekey">yanaka-etal-2017-determining</identifier>
<identifier type="doi">10.18653/v1/D17-1071</identifier>
<location>
<url>https://aclanthology.org/D17-1071</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>681</start>
<end>691</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Determining Semantic Textual Similarity using Natural Deduction Proofs
%A Yanaka, Hitomi
%A Mineshima, Koji
%A Martínez-Gómez, Pascual
%A Bekki, Daisuke
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F yanaka-etal-2017-determining
%X Determining semantic textual similarity is a core research subject in natural language processing. Since vector-based models for sentence representation often use shallow information, capturing accurate semantics is difficult. By contrast, logical semantic representations capture deeper levels of sentence semantics, but their symbolic nature does not offer graded notions of textual similarity. We propose a method for determining semantic textual similarity by combining shallow features with features extracted from natural deduction proofs of bidirectional entailment relations between sentence pairs. For the natural deduction proofs, we use ccg2lambda, a higher-order automatic inference system, which converts Combinatory Categorial Grammar (CCG) derivation trees into semantic representations and conducts natural deduction proofs. Experiments show that our system was able to outperform other logic-based systems and that features derived from the proofs are effective for learning textual similarity.
%R 10.18653/v1/D17-1071
%U https://aclanthology.org/D17-1071
%U https://doi.org/10.18653/v1/D17-1071
%P 681-691
Markdown (Informal)
[Determining Semantic Textual Similarity using Natural Deduction Proofs](https://aclanthology.org/D17-1071) (Yanaka et al., EMNLP 2017)
ACL