@inproceedings{liu-etal-2017-structural,
title = "Structural Embedding of Syntactic Trees for Machine Comprehension",
author = "Liu, Rui and
Hu, Junjie and
Wei, Wei and
Yang, Zi and
Nyberg, Eric",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1085",
doi = "10.18653/v1/D17-1085",
pages = "815--824",
abstract = "Deep neural networks for machine comprehension typically utilizes only word or character embeddings without explicitly taking advantage of structured linguistic information such as constituency trees and dependency trees. In this paper, we propose structural embedding of syntactic trees (SEST), an algorithm framework to utilize structured information and encode them into vector representations that can boost the performance of algorithms for the machine comprehension. We evaluate our approach using a state-of-the-art neural attention model on the SQuAD dataset. Experimental results demonstrate that our model can accurately identify the syntactic boundaries of the sentences and extract answers that are syntactically coherent over the baseline methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2017-structural">
<titleInfo>
<title>Structural Embedding of Syntactic Trees for Machine Comprehension</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junjie</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zi</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Nyberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Deep neural networks for machine comprehension typically utilizes only word or character embeddings without explicitly taking advantage of structured linguistic information such as constituency trees and dependency trees. In this paper, we propose structural embedding of syntactic trees (SEST), an algorithm framework to utilize structured information and encode them into vector representations that can boost the performance of algorithms for the machine comprehension. We evaluate our approach using a state-of-the-art neural attention model on the SQuAD dataset. Experimental results demonstrate that our model can accurately identify the syntactic boundaries of the sentences and extract answers that are syntactically coherent over the baseline methods.</abstract>
<identifier type="citekey">liu-etal-2017-structural</identifier>
<identifier type="doi">10.18653/v1/D17-1085</identifier>
<location>
<url>https://aclanthology.org/D17-1085</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>815</start>
<end>824</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Structural Embedding of Syntactic Trees for Machine Comprehension
%A Liu, Rui
%A Hu, Junjie
%A Wei, Wei
%A Yang, Zi
%A Nyberg, Eric
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F liu-etal-2017-structural
%X Deep neural networks for machine comprehension typically utilizes only word or character embeddings without explicitly taking advantage of structured linguistic information such as constituency trees and dependency trees. In this paper, we propose structural embedding of syntactic trees (SEST), an algorithm framework to utilize structured information and encode them into vector representations that can boost the performance of algorithms for the machine comprehension. We evaluate our approach using a state-of-the-art neural attention model on the SQuAD dataset. Experimental results demonstrate that our model can accurately identify the syntactic boundaries of the sentences and extract answers that are syntactically coherent over the baseline methods.
%R 10.18653/v1/D17-1085
%U https://aclanthology.org/D17-1085
%U https://doi.org/10.18653/v1/D17-1085
%P 815-824
Markdown (Informal)
[Structural Embedding of Syntactic Trees for Machine Comprehension](https://aclanthology.org/D17-1085) (Liu et al., EMNLP 2017)
ACL