@inproceedings{gashteovski-etal-2017-minie,
title = "{M}in{IE}: Minimizing Facts in Open Information Extraction",
author = "Gashteovski, Kiril and
Gemulla, Rainer and
del Corro, Luciano",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1278/",
doi = "10.18653/v1/D17-1278",
pages = "2630--2640",
abstract = "The goal of Open Information Extraction (OIE) is to extract surface relations and their arguments from natural-language text in an unsupervised, domain-independent manner. In this paper, we propose MinIE, an OIE system that aims to provide useful, compact extractions with high precision and recall. MinIE approaches these goals by (1) representing information about polarity, modality, attribution, and quantities with semantic annotations instead of in the actual extraction, and (2) identifying and removing parts that are considered overly specific. We conducted an experimental study with several real-world datasets and found that MinIE achieves competitive or higher precision and recall than most prior systems, while at the same time producing shorter, semantically enriched extractions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gashteovski-etal-2017-minie">
<titleInfo>
<title>MinIE: Minimizing Facts in Open Information Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kiril</namePart>
<namePart type="family">Gashteovski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rainer</namePart>
<namePart type="family">Gemulla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luciano</namePart>
<namePart type="family">del Corro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The goal of Open Information Extraction (OIE) is to extract surface relations and their arguments from natural-language text in an unsupervised, domain-independent manner. In this paper, we propose MinIE, an OIE system that aims to provide useful, compact extractions with high precision and recall. MinIE approaches these goals by (1) representing information about polarity, modality, attribution, and quantities with semantic annotations instead of in the actual extraction, and (2) identifying and removing parts that are considered overly specific. We conducted an experimental study with several real-world datasets and found that MinIE achieves competitive or higher precision and recall than most prior systems, while at the same time producing shorter, semantically enriched extractions.</abstract>
<identifier type="citekey">gashteovski-etal-2017-minie</identifier>
<identifier type="doi">10.18653/v1/D17-1278</identifier>
<location>
<url>https://aclanthology.org/D17-1278/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>2630</start>
<end>2640</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MinIE: Minimizing Facts in Open Information Extraction
%A Gashteovski, Kiril
%A Gemulla, Rainer
%A del Corro, Luciano
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F gashteovski-etal-2017-minie
%X The goal of Open Information Extraction (OIE) is to extract surface relations and their arguments from natural-language text in an unsupervised, domain-independent manner. In this paper, we propose MinIE, an OIE system that aims to provide useful, compact extractions with high precision and recall. MinIE approaches these goals by (1) representing information about polarity, modality, attribution, and quantities with semantic annotations instead of in the actual extraction, and (2) identifying and removing parts that are considered overly specific. We conducted an experimental study with several real-world datasets and found that MinIE achieves competitive or higher precision and recall than most prior systems, while at the same time producing shorter, semantically enriched extractions.
%R 10.18653/v1/D17-1278
%U https://aclanthology.org/D17-1278/
%U https://doi.org/10.18653/v1/D17-1278
%P 2630-2640
Markdown (Informal)
[MinIE: Minimizing Facts in Open Information Extraction](https://aclanthology.org/D17-1278/) (Gashteovski et al., EMNLP 2017)
ACL
- Kiril Gashteovski, Rainer Gemulla, and Luciano del Corro. 2017. MinIE: Minimizing Facts in Open Information Extraction. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2630–2640, Copenhagen, Denmark. Association for Computational Linguistics.