It’s going to be okay: Measuring Access to Support in Online Communities

Zijian Wang, David Jurgens


Abstract
People use online platforms to seek out support for their informational and emotional needs. Here, we ask what effect does revealing one’s gender have on receiving support. To answer this, we create (i) a new dataset and method for identifying supportive replies and (ii) new methods for inferring gender from text and name. We apply these methods to create a new massive corpus of 102M online interactions with gender-labeled users, each rated by degree of supportiveness. Our analysis shows wide-spread and consistent disparity in support: identifying as a woman is associated with higher rates of support - but also higher rates of disparagement.
Anthology ID:
D18-1004
Volume:
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
Month:
October-November
Year:
2018
Address:
Brussels, Belgium
Editors:
Ellen Riloff, David Chiang, Julia Hockenmaier, Jun’ichi Tsujii
Venue:
EMNLP
SIG:
SIGDAT
Publisher:
Association for Computational Linguistics
Note:
Pages:
33–45
Language:
URL:
https://aclanthology.org/D18-1004
DOI:
10.18653/v1/D18-1004
Bibkey:
Cite (ACL):
Zijian Wang and David Jurgens. 2018. It’s going to be okay: Measuring Access to Support in Online Communities. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 33–45, Brussels, Belgium. Association for Computational Linguistics.
Cite (Informal):
It’s going to be okay: Measuring Access to Support in Online Communities (Wang & Jurgens, EMNLP 2018)
Copy Citation:
PDF:
https://aclanthology.org/D18-1004.pdf
Attachment:
 D18-1004.Attachment.pdf
Video:
 https://aclanthology.org/D18-1004.mp4
Data
Social Support