@inproceedings{wang-etal-2018-cross-lingual,
title = "Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks",
author = "Wang, Zhichun and
Lv, Qingsong and
Lan, Xiaohan and
Zhang, Yu",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1032/",
doi = "10.18653/v1/D18-1032",
pages = "349--357",
abstract = "Multilingual knowledge graphs (KGs) such as DBpedia and YAGO contain structured knowledge of entities in several distinct languages, and they are useful resources for cross-lingual AI and NLP applications. Cross-lingual KG alignment is the task of matching entities with their counterparts in different languages, which is an important way to enrich the cross-lingual links in multilingual KGs. In this paper, we propose a novel approach for cross-lingual KG alignment via graph convolutional networks (GCNs). Given a set of pre-aligned entities, our approach trains GCNs to embed entities of each language into a unified vector space. Entity alignments are discovered based on the distances between entities in the embedding space. Embeddings can be learned from both the structural and attribute information of entities, and the results of structure embedding and attribute embedding are combined to get accurate alignments. In the experiments on aligning real multilingual KGs, our approach gets the best performance compared with other embedding-based KG alignment approaches."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2018-cross-lingual">
<titleInfo>
<title>Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhichun</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qingsong</namePart>
<namePart type="family">Lv</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaohan</namePart>
<namePart type="family">Lan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multilingual knowledge graphs (KGs) such as DBpedia and YAGO contain structured knowledge of entities in several distinct languages, and they are useful resources for cross-lingual AI and NLP applications. Cross-lingual KG alignment is the task of matching entities with their counterparts in different languages, which is an important way to enrich the cross-lingual links in multilingual KGs. In this paper, we propose a novel approach for cross-lingual KG alignment via graph convolutional networks (GCNs). Given a set of pre-aligned entities, our approach trains GCNs to embed entities of each language into a unified vector space. Entity alignments are discovered based on the distances between entities in the embedding space. Embeddings can be learned from both the structural and attribute information of entities, and the results of structure embedding and attribute embedding are combined to get accurate alignments. In the experiments on aligning real multilingual KGs, our approach gets the best performance compared with other embedding-based KG alignment approaches.</abstract>
<identifier type="citekey">wang-etal-2018-cross-lingual</identifier>
<identifier type="doi">10.18653/v1/D18-1032</identifier>
<location>
<url>https://aclanthology.org/D18-1032/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>349</start>
<end>357</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks
%A Wang, Zhichun
%A Lv, Qingsong
%A Lan, Xiaohan
%A Zhang, Yu
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F wang-etal-2018-cross-lingual
%X Multilingual knowledge graphs (KGs) such as DBpedia and YAGO contain structured knowledge of entities in several distinct languages, and they are useful resources for cross-lingual AI and NLP applications. Cross-lingual KG alignment is the task of matching entities with their counterparts in different languages, which is an important way to enrich the cross-lingual links in multilingual KGs. In this paper, we propose a novel approach for cross-lingual KG alignment via graph convolutional networks (GCNs). Given a set of pre-aligned entities, our approach trains GCNs to embed entities of each language into a unified vector space. Entity alignments are discovered based on the distances between entities in the embedding space. Embeddings can be learned from both the structural and attribute information of entities, and the results of structure embedding and attribute embedding are combined to get accurate alignments. In the experiments on aligning real multilingual KGs, our approach gets the best performance compared with other embedding-based KG alignment approaches.
%R 10.18653/v1/D18-1032
%U https://aclanthology.org/D18-1032/
%U https://doi.org/10.18653/v1/D18-1032
%P 349-357
Markdown (Informal)
[Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks](https://aclanthology.org/D18-1032/) (Wang et al., EMNLP 2018)
ACL