@inproceedings{plank-agic-2018-distant,
title = "Distant Supervision from Disparate Sources for Low-Resource Part-of-Speech Tagging",
author = "Plank, Barbara and
Agi{\'c}, {\v{Z}}eljko",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1061",
doi = "10.18653/v1/D18-1061",
pages = "614--620",
abstract = "a cross-lingual neural part-of-speech tagger that learns from disparate sources of distant supervision, and realistically scales to hundreds of low-resource languages. The model exploits annotation projection, instance selection, tag dictionaries, morphological lexicons, and distributed representations, all in a uniform framework. The approach is simple, yet surprisingly effective, resulting in a new state of the art without access to any gold annotated data.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="plank-agic-2018-distant">
<titleInfo>
<title>Distant Supervision from Disparate Sources for Low-Resource Part-of-Speech Tagging</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Željko</namePart>
<namePart type="family">Agić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>a cross-lingual neural part-of-speech tagger that learns from disparate sources of distant supervision, and realistically scales to hundreds of low-resource languages. The model exploits annotation projection, instance selection, tag dictionaries, morphological lexicons, and distributed representations, all in a uniform framework. The approach is simple, yet surprisingly effective, resulting in a new state of the art without access to any gold annotated data.</abstract>
<identifier type="citekey">plank-agic-2018-distant</identifier>
<identifier type="doi">10.18653/v1/D18-1061</identifier>
<location>
<url>https://aclanthology.org/D18-1061</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>614</start>
<end>620</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Distant Supervision from Disparate Sources for Low-Resource Part-of-Speech Tagging
%A Plank, Barbara
%A Agić, Željko
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F plank-agic-2018-distant
%X a cross-lingual neural part-of-speech tagger that learns from disparate sources of distant supervision, and realistically scales to hundreds of low-resource languages. The model exploits annotation projection, instance selection, tag dictionaries, morphological lexicons, and distributed representations, all in a uniform framework. The approach is simple, yet surprisingly effective, resulting in a new state of the art without access to any gold annotated data.
%R 10.18653/v1/D18-1061
%U https://aclanthology.org/D18-1061
%U https://doi.org/10.18653/v1/D18-1061
%P 614-620
Markdown (Informal)
[Distant Supervision from Disparate Sources for Low-Resource Part-of-Speech Tagging](https://aclanthology.org/D18-1061) (Plank & Agić, EMNLP 2018)
ACL