@inproceedings{ravi-kozareva-2018-self,
title = "Self-Governing Neural Networks for On-Device Short Text Classification",
author = "Ravi, Sujith and
Kozareva, Zornitsa",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1092",
doi = "10.18653/v1/D18-1092",
pages = "804--810",
abstract = "Deep neural networks reach state-of-the-art performance for wide range of natural language processing, computer vision and speech applications. Yet, one of the biggest challenges is running these complex networks on devices such as mobile phones or smart watches with tiny memory footprint and low computational capacity. We propose on-device Self-Governing Neural Networks (SGNNs), which learn compact projection vectors with local sensitive hashing. The key advantage of SGNNs over existing work is that they surmount the need for pre-trained word embeddings and complex networks with huge parameters. We conduct extensive evaluation on dialog act classification and show significant improvement over state-of-the-art results. Our findings show that SGNNs are effective at capturing low-dimensional semantic text representations, while maintaining high accuracy.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ravi-kozareva-2018-self">
<titleInfo>
<title>Self-Governing Neural Networks for On-Device Short Text Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sujith</namePart>
<namePart type="family">Ravi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Deep neural networks reach state-of-the-art performance for wide range of natural language processing, computer vision and speech applications. Yet, one of the biggest challenges is running these complex networks on devices such as mobile phones or smart watches with tiny memory footprint and low computational capacity. We propose on-device Self-Governing Neural Networks (SGNNs), which learn compact projection vectors with local sensitive hashing. The key advantage of SGNNs over existing work is that they surmount the need for pre-trained word embeddings and complex networks with huge parameters. We conduct extensive evaluation on dialog act classification and show significant improvement over state-of-the-art results. Our findings show that SGNNs are effective at capturing low-dimensional semantic text representations, while maintaining high accuracy.</abstract>
<identifier type="citekey">ravi-kozareva-2018-self</identifier>
<identifier type="doi">10.18653/v1/D18-1092</identifier>
<location>
<url>https://aclanthology.org/D18-1092</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>804</start>
<end>810</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Self-Governing Neural Networks for On-Device Short Text Classification
%A Ravi, Sujith
%A Kozareva, Zornitsa
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F ravi-kozareva-2018-self
%X Deep neural networks reach state-of-the-art performance for wide range of natural language processing, computer vision and speech applications. Yet, one of the biggest challenges is running these complex networks on devices such as mobile phones or smart watches with tiny memory footprint and low computational capacity. We propose on-device Self-Governing Neural Networks (SGNNs), which learn compact projection vectors with local sensitive hashing. The key advantage of SGNNs over existing work is that they surmount the need for pre-trained word embeddings and complex networks with huge parameters. We conduct extensive evaluation on dialog act classification and show significant improvement over state-of-the-art results. Our findings show that SGNNs are effective at capturing low-dimensional semantic text representations, while maintaining high accuracy.
%R 10.18653/v1/D18-1092
%U https://aclanthology.org/D18-1092
%U https://doi.org/10.18653/v1/D18-1092
%P 804-810
Markdown (Informal)
[Self-Governing Neural Networks for On-Device Short Text Classification](https://aclanthology.org/D18-1092) (Ravi & Kozareva, EMNLP 2018)
ACL