@inproceedings{giorgi-etal-2018-remarkable,
title = "The Remarkable Benefit of User-Level Aggregation for Lexical-based Population-Level Predictions",
author = "Giorgi, Salvatore and
Preo\c tiuc-Pietro, Daniel and
Buffone, Anneke and
Rieman, Daniel and
Ungar, Lyle and
Schwartz, H. Andrew",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun'ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1148/",
doi = "10.18653/v1/D18-1148",
pages = "1167--1172",
abstract = "Nowcasting based on social media text promises to provide unobtrusive and near real-time predictions of community-level outcomes. These outcomes are typically regarding people, but the data is often aggregated without regard to users in the Twitter populations of each community. This paper describes a simple yet effective method for building community-level models using Twitter language aggregated by user. Results on four different U.S. county-level tasks, spanning demographic, health, and psychological outcomes show large and consistent improvements in prediction accuracies (e.g. from Pearson r=.73 to .82 for median income prediction or r=.37 to .47 for life satisfaction prediction) over the standard approach of aggregating all tweets. We make our aggregated and anonymized community-level data, derived from 37 billion tweets -- over 1 billion of which were mapped to counties, available for research."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="giorgi-etal-2018-remarkable">
<titleInfo>
<title>The Remarkable Benefit of User-Level Aggregation for Lexical-based Population-Level Predictions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Salvatore</namePart>
<namePart type="family">Giorgi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Preoţiuc-Pietro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anneke</namePart>
<namePart type="family">Buffone</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Rieman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lyle</namePart>
<namePart type="family">Ungar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="given">Andrew</namePart>
<namePart type="family">Schwartz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Nowcasting based on social media text promises to provide unobtrusive and near real-time predictions of community-level outcomes. These outcomes are typically regarding people, but the data is often aggregated without regard to users in the Twitter populations of each community. This paper describes a simple yet effective method for building community-level models using Twitter language aggregated by user. Results on four different U.S. county-level tasks, spanning demographic, health, and psychological outcomes show large and consistent improvements in prediction accuracies (e.g. from Pearson r=.73 to .82 for median income prediction or r=.37 to .47 for life satisfaction prediction) over the standard approach of aggregating all tweets. We make our aggregated and anonymized community-level data, derived from 37 billion tweets – over 1 billion of which were mapped to counties, available for research.</abstract>
<identifier type="citekey">giorgi-etal-2018-remarkable</identifier>
<identifier type="doi">10.18653/v1/D18-1148</identifier>
<location>
<url>https://aclanthology.org/D18-1148/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>1167</start>
<end>1172</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Remarkable Benefit of User-Level Aggregation for Lexical-based Population-Level Predictions
%A Giorgi, Salvatore
%A Preoţiuc-Pietro, Daniel
%A Buffone, Anneke
%A Rieman, Daniel
%A Ungar, Lyle
%A Schwartz, H. Andrew
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F giorgi-etal-2018-remarkable
%X Nowcasting based on social media text promises to provide unobtrusive and near real-time predictions of community-level outcomes. These outcomes are typically regarding people, but the data is often aggregated without regard to users in the Twitter populations of each community. This paper describes a simple yet effective method for building community-level models using Twitter language aggregated by user. Results on four different U.S. county-level tasks, spanning demographic, health, and psychological outcomes show large and consistent improvements in prediction accuracies (e.g. from Pearson r=.73 to .82 for median income prediction or r=.37 to .47 for life satisfaction prediction) over the standard approach of aggregating all tweets. We make our aggregated and anonymized community-level data, derived from 37 billion tweets – over 1 billion of which were mapped to counties, available for research.
%R 10.18653/v1/D18-1148
%U https://aclanthology.org/D18-1148/
%U https://doi.org/10.18653/v1/D18-1148
%P 1167-1172
Markdown (Informal)
[The Remarkable Benefit of User-Level Aggregation for Lexical-based Population-Level Predictions](https://aclanthology.org/D18-1148/) (Giorgi et al., EMNLP 2018)
ACL