@inproceedings{leeuwenberg-moens-2018-temporal,
title = "Temporal Information Extraction by Predicting Relative Time-lines",
author = "Leeuwenberg, Artuur and
Moens, Marie-Francine",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1155/",
doi = "10.18653/v1/D18-1155",
pages = "1237--1246",
abstract = "The current leading paradigm for temporal information extraction from text consists of three phases: (1) recognition of events and temporal expressions, (2) recognition of temporal relations among them, and (3) time-line construction from the temporal relations. In contrast to the first two phases, the last phase, time-line construction, received little attention and is the focus of this work. In this paper, we propose a new method to construct a linear time-line from a set of (extracted) temporal relations. But more importantly, we propose a novel paradigm in which we directly predict start and end-points for events from the text, constituting a time-line without going through the intermediate step of prediction of temporal relations as in earlier work. Within this paradigm, we propose two models that predict in linear complexity, and a new training loss using TimeML-style annotations, yielding promising results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="leeuwenberg-moens-2018-temporal">
<titleInfo>
<title>Temporal Information Extraction by Predicting Relative Time-lines</title>
</titleInfo>
<name type="personal">
<namePart type="given">Artuur</namePart>
<namePart type="family">Leeuwenberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The current leading paradigm for temporal information extraction from text consists of three phases: (1) recognition of events and temporal expressions, (2) recognition of temporal relations among them, and (3) time-line construction from the temporal relations. In contrast to the first two phases, the last phase, time-line construction, received little attention and is the focus of this work. In this paper, we propose a new method to construct a linear time-line from a set of (extracted) temporal relations. But more importantly, we propose a novel paradigm in which we directly predict start and end-points for events from the text, constituting a time-line without going through the intermediate step of prediction of temporal relations as in earlier work. Within this paradigm, we propose two models that predict in linear complexity, and a new training loss using TimeML-style annotations, yielding promising results.</abstract>
<identifier type="citekey">leeuwenberg-moens-2018-temporal</identifier>
<identifier type="doi">10.18653/v1/D18-1155</identifier>
<location>
<url>https://aclanthology.org/D18-1155/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>1237</start>
<end>1246</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Temporal Information Extraction by Predicting Relative Time-lines
%A Leeuwenberg, Artuur
%A Moens, Marie-Francine
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F leeuwenberg-moens-2018-temporal
%X The current leading paradigm for temporal information extraction from text consists of three phases: (1) recognition of events and temporal expressions, (2) recognition of temporal relations among them, and (3) time-line construction from the temporal relations. In contrast to the first two phases, the last phase, time-line construction, received little attention and is the focus of this work. In this paper, we propose a new method to construct a linear time-line from a set of (extracted) temporal relations. But more importantly, we propose a novel paradigm in which we directly predict start and end-points for events from the text, constituting a time-line without going through the intermediate step of prediction of temporal relations as in earlier work. Within this paradigm, we propose two models that predict in linear complexity, and a new training loss using TimeML-style annotations, yielding promising results.
%R 10.18653/v1/D18-1155
%U https://aclanthology.org/D18-1155/
%U https://doi.org/10.18653/v1/D18-1155
%P 1237-1246
Markdown (Informal)
[Temporal Information Extraction by Predicting Relative Time-lines](https://aclanthology.org/D18-1155/) (Leeuwenberg & Moens, EMNLP 2018)
ACL