@inproceedings{kedzie-etal-2018-content,
title = "Content Selection in Deep Learning Models of Summarization",
author = "Kedzie, Chris and
McKeown, Kathleen and
Daum{\'e} III, Hal",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1208/",
doi = "10.18653/v1/D18-1208",
pages = "1818--1828",
abstract = "We carry out experiments with deep learning models of summarization across the domains of news, personal stories, meetings, and medical articles in order to understand how content selection is performed. We find that many sophisticated features of state of the art extractive summarizers do not improve performance over simpler models. These results suggest that it is easier to create a summarizer for a new domain than previous work suggests and bring into question the benefit of deep learning models for summarization for those domains that do have massive datasets (i.e., news). At the same time, they suggest important questions for new research in summarization; namely, new forms of sentence representations or external knowledge sources are needed that are better suited to the sumarization task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kedzie-etal-2018-content">
<titleInfo>
<title>Content Selection in Deep Learning Models of Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Kedzie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kathleen</namePart>
<namePart type="family">McKeown</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hal</namePart>
<namePart type="family">Daumé III</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We carry out experiments with deep learning models of summarization across the domains of news, personal stories, meetings, and medical articles in order to understand how content selection is performed. We find that many sophisticated features of state of the art extractive summarizers do not improve performance over simpler models. These results suggest that it is easier to create a summarizer for a new domain than previous work suggests and bring into question the benefit of deep learning models for summarization for those domains that do have massive datasets (i.e., news). At the same time, they suggest important questions for new research in summarization; namely, new forms of sentence representations or external knowledge sources are needed that are better suited to the sumarization task.</abstract>
<identifier type="citekey">kedzie-etal-2018-content</identifier>
<identifier type="doi">10.18653/v1/D18-1208</identifier>
<location>
<url>https://aclanthology.org/D18-1208/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>1818</start>
<end>1828</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Content Selection in Deep Learning Models of Summarization
%A Kedzie, Chris
%A McKeown, Kathleen
%A Daumé III, Hal
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F kedzie-etal-2018-content
%X We carry out experiments with deep learning models of summarization across the domains of news, personal stories, meetings, and medical articles in order to understand how content selection is performed. We find that many sophisticated features of state of the art extractive summarizers do not improve performance over simpler models. These results suggest that it is easier to create a summarizer for a new domain than previous work suggests and bring into question the benefit of deep learning models for summarization for those domains that do have massive datasets (i.e., news). At the same time, they suggest important questions for new research in summarization; namely, new forms of sentence representations or external knowledge sources are needed that are better suited to the sumarization task.
%R 10.18653/v1/D18-1208
%U https://aclanthology.org/D18-1208/
%U https://doi.org/10.18653/v1/D18-1208
%P 1818-1828
Markdown (Informal)
[Content Selection in Deep Learning Models of Summarization](https://aclanthology.org/D18-1208/) (Kedzie et al., EMNLP 2018)
ACL