@inproceedings{he-etal-2018-decoupling,
title = "Decoupling Strategy and Generation in Negotiation Dialogues",
author = "He, He and
Chen, Derek and
Balakrishnan, Anusha and
Liang, Percy",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1256/",
doi = "10.18653/v1/D18-1256",
pages = "2333--2343",
abstract = "We consider negotiation settings in which two agents use natural language to bargain on goods. Agents need to decide on both high-level strategy (e.g., proposing {\$}50) and the execution of that strategy (e.g., generating {\textquotedblleft}The bike is brand new. Selling for just {\$}50!{\textquotedblright}). Recent work on negotiation trains neural models, but their end-to-end nature makes it hard to control their strategy, and reinforcement learning tends to lead to degenerate solutions. In this paper, we propose a modular approach based on coarse dialogue acts (e.g., propose(price=50)) that decouples strategy and generation. We show that we can flexibly set the strategy using supervised learning, reinforcement learning, or domain-specific knowledge without degeneracy, while our retrieval-based generation can maintain context-awareness and produce diverse utterances. We test our approach on the recently proposed DEALORNODEAL game, and we also collect a richer dataset based on real items on Craigslist. Human evaluation shows that our systems achieve higher task success rate and more human-like negotiation behavior than previous approaches."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="he-etal-2018-decoupling">
<titleInfo>
<title>Decoupling Strategy and Generation in Negotiation Dialogues</title>
</titleInfo>
<name type="personal">
<namePart type="given">He</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Derek</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anusha</namePart>
<namePart type="family">Balakrishnan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Percy</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We consider negotiation settings in which two agents use natural language to bargain on goods. Agents need to decide on both high-level strategy (e.g., proposing $50) and the execution of that strategy (e.g., generating “The bike is brand new. Selling for just $50!”). Recent work on negotiation trains neural models, but their end-to-end nature makes it hard to control their strategy, and reinforcement learning tends to lead to degenerate solutions. In this paper, we propose a modular approach based on coarse dialogue acts (e.g., propose(price=50)) that decouples strategy and generation. We show that we can flexibly set the strategy using supervised learning, reinforcement learning, or domain-specific knowledge without degeneracy, while our retrieval-based generation can maintain context-awareness and produce diverse utterances. We test our approach on the recently proposed DEALORNODEAL game, and we also collect a richer dataset based on real items on Craigslist. Human evaluation shows that our systems achieve higher task success rate and more human-like negotiation behavior than previous approaches.</abstract>
<identifier type="citekey">he-etal-2018-decoupling</identifier>
<identifier type="doi">10.18653/v1/D18-1256</identifier>
<location>
<url>https://aclanthology.org/D18-1256/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>2333</start>
<end>2343</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Decoupling Strategy and Generation in Negotiation Dialogues
%A He, He
%A Chen, Derek
%A Balakrishnan, Anusha
%A Liang, Percy
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F he-etal-2018-decoupling
%X We consider negotiation settings in which two agents use natural language to bargain on goods. Agents need to decide on both high-level strategy (e.g., proposing $50) and the execution of that strategy (e.g., generating “The bike is brand new. Selling for just $50!”). Recent work on negotiation trains neural models, but their end-to-end nature makes it hard to control their strategy, and reinforcement learning tends to lead to degenerate solutions. In this paper, we propose a modular approach based on coarse dialogue acts (e.g., propose(price=50)) that decouples strategy and generation. We show that we can flexibly set the strategy using supervised learning, reinforcement learning, or domain-specific knowledge without degeneracy, while our retrieval-based generation can maintain context-awareness and produce diverse utterances. We test our approach on the recently proposed DEALORNODEAL game, and we also collect a richer dataset based on real items on Craigslist. Human evaluation shows that our systems achieve higher task success rate and more human-like negotiation behavior than previous approaches.
%R 10.18653/v1/D18-1256
%U https://aclanthology.org/D18-1256/
%U https://doi.org/10.18653/v1/D18-1256
%P 2333-2343
Markdown (Informal)
[Decoupling Strategy and Generation in Negotiation Dialogues](https://aclanthology.org/D18-1256/) (He et al., EMNLP 2018)
ACL