@inproceedings{pampari-etal-2018-emrqa,
title = "emr{QA}: A Large Corpus for Question Answering on Electronic Medical Records",
author = "Pampari, Anusri and
Raghavan, Preethi and
Liang, Jennifer and
Peng, Jian",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1258",
doi = "10.18653/v1/D18-1258",
pages = "2357--2368",
abstract = "We propose a novel methodology to generate domain-specific large-scale question answering (QA) datasets by re-purposing existing annotations for other NLP tasks. We demonstrate an instance of this methodology in generating a large-scale QA dataset for electronic medical records by leveraging existing expert annotations on clinical notes for various NLP tasks from the community shared i2b2 datasets. The resulting corpus (emrQA) has 1 million questions-logical form and 400,000+ question-answer evidence pairs. We characterize the dataset and explore its learning potential by training baseline models for question to logical form and question to answer mapping.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pampari-etal-2018-emrqa">
<titleInfo>
<title>emrQA: A Large Corpus for Question Answering on Electronic Medical Records</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anusri</namePart>
<namePart type="family">Pampari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preethi</namePart>
<namePart type="family">Raghavan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jennifer</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jian</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a novel methodology to generate domain-specific large-scale question answering (QA) datasets by re-purposing existing annotations for other NLP tasks. We demonstrate an instance of this methodology in generating a large-scale QA dataset for electronic medical records by leveraging existing expert annotations on clinical notes for various NLP tasks from the community shared i2b2 datasets. The resulting corpus (emrQA) has 1 million questions-logical form and 400,000+ question-answer evidence pairs. We characterize the dataset and explore its learning potential by training baseline models for question to logical form and question to answer mapping.</abstract>
<identifier type="citekey">pampari-etal-2018-emrqa</identifier>
<identifier type="doi">10.18653/v1/D18-1258</identifier>
<location>
<url>https://aclanthology.org/D18-1258</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>2357</start>
<end>2368</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T emrQA: A Large Corpus for Question Answering on Electronic Medical Records
%A Pampari, Anusri
%A Raghavan, Preethi
%A Liang, Jennifer
%A Peng, Jian
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F pampari-etal-2018-emrqa
%X We propose a novel methodology to generate domain-specific large-scale question answering (QA) datasets by re-purposing existing annotations for other NLP tasks. We demonstrate an instance of this methodology in generating a large-scale QA dataset for electronic medical records by leveraging existing expert annotations on clinical notes for various NLP tasks from the community shared i2b2 datasets. The resulting corpus (emrQA) has 1 million questions-logical form and 400,000+ question-answer evidence pairs. We characterize the dataset and explore its learning potential by training baseline models for question to logical form and question to answer mapping.
%R 10.18653/v1/D18-1258
%U https://aclanthology.org/D18-1258
%U https://doi.org/10.18653/v1/D18-1258
%P 2357-2368
Markdown (Informal)
[emrQA: A Large Corpus for Question Answering on Electronic Medical Records](https://aclanthology.org/D18-1258) (Pampari et al., EMNLP 2018)
ACL