@inproceedings{malca-reichart-2018-neural,
title = "Neural Transition Based Parsing of Web Queries: An Entity Based Approach",
author = "Malca, Rivka and
Reichart, Roi",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1290",
doi = "10.18653/v1/D18-1290",
pages = "2700--2710",
abstract = "Web queries with question intent manifest a complex syntactic structure and the processing of this structure is important for their interpretation. Pinter et al. (2016) has formalized the grammar of these queries and proposed semi-supervised algorithms for the adaptation of parsers originally designed to parse according to the standard dependency grammar, so that they can account for the unique forest grammar of queries. However, their algorithms rely on resources typically not available outside of big web corporates. We propose a new BiLSTM query parser that: (1) Explicitly accounts for the unique grammar of web queries; and (2) Utilizes named entity (NE) information from a BiLSTM NE tagger, that can be jointly trained with the parser. In order to train our model we annotate the query treebank of Pinter et al. (2016) with NEs. When trained on 2500 annotated queries our parser achieves UAS of 83.5{\%} and segmentation F1-score of 84.5, substantially outperforming existing state-of-the-art parsers.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="malca-reichart-2018-neural">
<titleInfo>
<title>Neural Transition Based Parsing of Web Queries: An Entity Based Approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rivka</namePart>
<namePart type="family">Malca</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roi</namePart>
<namePart type="family">Reichart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Web queries with question intent manifest a complex syntactic structure and the processing of this structure is important for their interpretation. Pinter et al. (2016) has formalized the grammar of these queries and proposed semi-supervised algorithms for the adaptation of parsers originally designed to parse according to the standard dependency grammar, so that they can account for the unique forest grammar of queries. However, their algorithms rely on resources typically not available outside of big web corporates. We propose a new BiLSTM query parser that: (1) Explicitly accounts for the unique grammar of web queries; and (2) Utilizes named entity (NE) information from a BiLSTM NE tagger, that can be jointly trained with the parser. In order to train our model we annotate the query treebank of Pinter et al. (2016) with NEs. When trained on 2500 annotated queries our parser achieves UAS of 83.5% and segmentation F1-score of 84.5, substantially outperforming existing state-of-the-art parsers.</abstract>
<identifier type="citekey">malca-reichart-2018-neural</identifier>
<identifier type="doi">10.18653/v1/D18-1290</identifier>
<location>
<url>https://aclanthology.org/D18-1290</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>2700</start>
<end>2710</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Transition Based Parsing of Web Queries: An Entity Based Approach
%A Malca, Rivka
%A Reichart, Roi
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F malca-reichart-2018-neural
%X Web queries with question intent manifest a complex syntactic structure and the processing of this structure is important for their interpretation. Pinter et al. (2016) has formalized the grammar of these queries and proposed semi-supervised algorithms for the adaptation of parsers originally designed to parse according to the standard dependency grammar, so that they can account for the unique forest grammar of queries. However, their algorithms rely on resources typically not available outside of big web corporates. We propose a new BiLSTM query parser that: (1) Explicitly accounts for the unique grammar of web queries; and (2) Utilizes named entity (NE) information from a BiLSTM NE tagger, that can be jointly trained with the parser. In order to train our model we annotate the query treebank of Pinter et al. (2016) with NEs. When trained on 2500 annotated queries our parser achieves UAS of 83.5% and segmentation F1-score of 84.5, substantially outperforming existing state-of-the-art parsers.
%R 10.18653/v1/D18-1290
%U https://aclanthology.org/D18-1290
%U https://doi.org/10.18653/v1/D18-1290
%P 2700-2710
Markdown (Informal)
[Neural Transition Based Parsing of Web Queries: An Entity Based Approach](https://aclanthology.org/D18-1290) (Malca & Reichart, EMNLP 2018)
ACL