@inproceedings{joulin-etal-2018-loss,
title = "Loss in Translation: Learning Bilingual Word Mapping with a Retrieval Criterion",
author = "Joulin, Armand and
Bojanowski, Piotr and
Mikolov, Tomas and
J{\'e}gou, Herv{\'e} and
Grave, Edouard",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1330",
doi = "10.18653/v1/D18-1330",
pages = "2979--2984",
abstract = "Continuous word representations learned separately on distinct languages can be aligned so that their words become comparable in a common space. Existing works typically solve a quadratic problem to learn a orthogonal matrix aligning a bilingual lexicon, and use a retrieval criterion for inference. In this paper, we propose an unified formulation that directly optimizes a retrieval criterion in an end-to-end fashion. Our experiments on standard benchmarks show that our approach outperforms the state of the art on word translation, with the biggest improvements observed for distant language pairs such as English-Chinese.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="joulin-etal-2018-loss">
<titleInfo>
<title>Loss in Translation: Learning Bilingual Word Mapping with a Retrieval Criterion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Armand</namePart>
<namePart type="family">Joulin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piotr</namePart>
<namePart type="family">Bojanowski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomas</namePart>
<namePart type="family">Mikolov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hervé</namePart>
<namePart type="family">Jégou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edouard</namePart>
<namePart type="family">Grave</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Continuous word representations learned separately on distinct languages can be aligned so that their words become comparable in a common space. Existing works typically solve a quadratic problem to learn a orthogonal matrix aligning a bilingual lexicon, and use a retrieval criterion for inference. In this paper, we propose an unified formulation that directly optimizes a retrieval criterion in an end-to-end fashion. Our experiments on standard benchmarks show that our approach outperforms the state of the art on word translation, with the biggest improvements observed for distant language pairs such as English-Chinese.</abstract>
<identifier type="citekey">joulin-etal-2018-loss</identifier>
<identifier type="doi">10.18653/v1/D18-1330</identifier>
<location>
<url>https://aclanthology.org/D18-1330</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>2979</start>
<end>2984</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Loss in Translation: Learning Bilingual Word Mapping with a Retrieval Criterion
%A Joulin, Armand
%A Bojanowski, Piotr
%A Mikolov, Tomas
%A Jégou, Hervé
%A Grave, Edouard
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F joulin-etal-2018-loss
%X Continuous word representations learned separately on distinct languages can be aligned so that their words become comparable in a common space. Existing works typically solve a quadratic problem to learn a orthogonal matrix aligning a bilingual lexicon, and use a retrieval criterion for inference. In this paper, we propose an unified formulation that directly optimizes a retrieval criterion in an end-to-end fashion. Our experiments on standard benchmarks show that our approach outperforms the state of the art on word translation, with the biggest improvements observed for distant language pairs such as English-Chinese.
%R 10.18653/v1/D18-1330
%U https://aclanthology.org/D18-1330
%U https://doi.org/10.18653/v1/D18-1330
%P 2979-2984
Markdown (Informal)
[Loss in Translation: Learning Bilingual Word Mapping with a Retrieval Criterion](https://aclanthology.org/D18-1330) (Joulin et al., EMNLP 2018)
ACL