@inproceedings{yi-etal-2018-automatic,
title = "Automatic Poetry Generation with Mutual Reinforcement Learning",
author = "Yi, Xiaoyuan and
Sun, Maosong and
Li, Ruoyu and
Li, Wenhao",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1353/",
doi = "10.18653/v1/D18-1353",
pages = "3143--3153",
abstract = "Poetry is one of the most beautiful forms of human language art. As a crucial step towards computer creativity, automatic poetry generation has drawn researchers' attention for decades. In recent years, some neural models have made remarkable progress in this task. However, they are all based on maximum likelihood estimation, which only learns common patterns of the corpus and results in loss-evaluation mismatch. Human experts evaluate poetry in terms of some specific criteria, instead of word-level likelihood. To handle this problem, we directly model the criteria and use them as explicit rewards to guide gradient update by reinforcement learning, so as to motivate the model to pursue higher scores. Besides, inspired by writing theories, we propose a novel mutual reinforcement learning schema. We simultaneously train two learners (generators) which learn not only from the teacher (rewarder) but also from each other to further improve performance. We experiment on Chinese poetry. Based on a strong basic model, our method achieves better results and outperforms the current state-of-the-art method."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yi-etal-2018-automatic">
<titleInfo>
<title>Automatic Poetry Generation with Mutual Reinforcement Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaoyuan</namePart>
<namePart type="family">Yi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruoyu</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenhao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Poetry is one of the most beautiful forms of human language art. As a crucial step towards computer creativity, automatic poetry generation has drawn researchers’ attention for decades. In recent years, some neural models have made remarkable progress in this task. However, they are all based on maximum likelihood estimation, which only learns common patterns of the corpus and results in loss-evaluation mismatch. Human experts evaluate poetry in terms of some specific criteria, instead of word-level likelihood. To handle this problem, we directly model the criteria and use them as explicit rewards to guide gradient update by reinforcement learning, so as to motivate the model to pursue higher scores. Besides, inspired by writing theories, we propose a novel mutual reinforcement learning schema. We simultaneously train two learners (generators) which learn not only from the teacher (rewarder) but also from each other to further improve performance. We experiment on Chinese poetry. Based on a strong basic model, our method achieves better results and outperforms the current state-of-the-art method.</abstract>
<identifier type="citekey">yi-etal-2018-automatic</identifier>
<identifier type="doi">10.18653/v1/D18-1353</identifier>
<location>
<url>https://aclanthology.org/D18-1353/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>3143</start>
<end>3153</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Poetry Generation with Mutual Reinforcement Learning
%A Yi, Xiaoyuan
%A Sun, Maosong
%A Li, Ruoyu
%A Li, Wenhao
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F yi-etal-2018-automatic
%X Poetry is one of the most beautiful forms of human language art. As a crucial step towards computer creativity, automatic poetry generation has drawn researchers’ attention for decades. In recent years, some neural models have made remarkable progress in this task. However, they are all based on maximum likelihood estimation, which only learns common patterns of the corpus and results in loss-evaluation mismatch. Human experts evaluate poetry in terms of some specific criteria, instead of word-level likelihood. To handle this problem, we directly model the criteria and use them as explicit rewards to guide gradient update by reinforcement learning, so as to motivate the model to pursue higher scores. Besides, inspired by writing theories, we propose a novel mutual reinforcement learning schema. We simultaneously train two learners (generators) which learn not only from the teacher (rewarder) but also from each other to further improve performance. We experiment on Chinese poetry. Based on a strong basic model, our method achieves better results and outperforms the current state-of-the-art method.
%R 10.18653/v1/D18-1353
%U https://aclanthology.org/D18-1353/
%U https://doi.org/10.18653/v1/D18-1353
%P 3143-3153
Markdown (Informal)
[Automatic Poetry Generation with Mutual Reinforcement Learning](https://aclanthology.org/D18-1353/) (Yi et al., EMNLP 2018)
ACL