@inproceedings{maharjan-etal-2018-genre,
title = "A Genre-Aware Attention Model to Improve the Likability Prediction of Books",
author = "Maharjan, Suraj and
Montes, Manuel and
Gonz{\'a}lez, Fabio A. and
Solorio, Thamar",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1375",
doi = "10.18653/v1/D18-1375",
pages = "3381--3391",
abstract = "Likability prediction of books has many uses. Readers, writers, as well as the publishing industry, can all benefit from automatic book likability prediction systems. In order to make reliable decisions, these systems need to assimilate information from different aspects of a book in a sensible way. We propose a novel multimodal neural architecture that incorporates genre supervision to assign weights to individual feature types. Our proposed method is capable of dynamically tailoring weights given to feature types based on the characteristics of each book. Our architecture achieves competitive results and even outperforms state-of-the-art for this task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="maharjan-etal-2018-genre">
<titleInfo>
<title>A Genre-Aware Attention Model to Improve the Likability Prediction of Books</title>
</titleInfo>
<name type="personal">
<namePart type="given">Suraj</namePart>
<namePart type="family">Maharjan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manuel</namePart>
<namePart type="family">Montes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="given">A</namePart>
<namePart type="family">González</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Likability prediction of books has many uses. Readers, writers, as well as the publishing industry, can all benefit from automatic book likability prediction systems. In order to make reliable decisions, these systems need to assimilate information from different aspects of a book in a sensible way. We propose a novel multimodal neural architecture that incorporates genre supervision to assign weights to individual feature types. Our proposed method is capable of dynamically tailoring weights given to feature types based on the characteristics of each book. Our architecture achieves competitive results and even outperforms state-of-the-art for this task.</abstract>
<identifier type="citekey">maharjan-etal-2018-genre</identifier>
<identifier type="doi">10.18653/v1/D18-1375</identifier>
<location>
<url>https://aclanthology.org/D18-1375</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>3381</start>
<end>3391</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Genre-Aware Attention Model to Improve the Likability Prediction of Books
%A Maharjan, Suraj
%A Montes, Manuel
%A González, Fabio A.
%A Solorio, Thamar
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F maharjan-etal-2018-genre
%X Likability prediction of books has many uses. Readers, writers, as well as the publishing industry, can all benefit from automatic book likability prediction systems. In order to make reliable decisions, these systems need to assimilate information from different aspects of a book in a sensible way. We propose a novel multimodal neural architecture that incorporates genre supervision to assign weights to individual feature types. Our proposed method is capable of dynamically tailoring weights given to feature types based on the characteristics of each book. Our architecture achieves competitive results and even outperforms state-of-the-art for this task.
%R 10.18653/v1/D18-1375
%U https://aclanthology.org/D18-1375
%U https://doi.org/10.18653/v1/D18-1375
%P 3381-3391
Markdown (Informal)
[A Genre-Aware Attention Model to Improve the Likability Prediction of Books](https://aclanthology.org/D18-1375) (Maharjan et al., EMNLP 2018)
ACL