@inproceedings{ghosal-etal-2018-contextual,
title = "Contextual Inter-modal Attention for Multi-modal Sentiment Analysis",
author = "Ghosal, Deepanway and
Akhtar, Md Shad and
Chauhan, Dushyant and
Poria, Soujanya and
Ekbal, Asif and
Bhattacharyya, Pushpak",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1382/",
doi = "10.18653/v1/D18-1382",
pages = "3454--3466",
abstract = "Multi-modal sentiment analysis offers various challenges, one being the effective combination of different input modalities, namely text, visual and acoustic. In this paper, we propose a recurrent neural network based multi-modal attention framework that leverages the contextual information for utterance-level sentiment prediction. The proposed approach applies attention on multi-modal multi-utterance representations and tries to learn the contributing features amongst them. We evaluate our proposed approach on two multi-modal sentiment analysis benchmark datasets, viz. CMU Multi-modal Opinion-level Sentiment Intensity (CMU-MOSI) corpus and the recently released CMU Multi-modal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) corpus. Evaluation results show the effectiveness of our proposed approach with the accuracies of 82.31{\%} and 79.80{\%} for the MOSI and MOSEI datasets, respectively. These are approximately 2 and 1 points performance improvement over the state-of-the-art models for the datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ghosal-etal-2018-contextual">
<titleInfo>
<title>Contextual Inter-modal Attention for Multi-modal Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Deepanway</namePart>
<namePart type="family">Ghosal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md</namePart>
<namePart type="given">Shad</namePart>
<namePart type="family">Akhtar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dushyant</namePart>
<namePart type="family">Chauhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soujanya</namePart>
<namePart type="family">Poria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multi-modal sentiment analysis offers various challenges, one being the effective combination of different input modalities, namely text, visual and acoustic. In this paper, we propose a recurrent neural network based multi-modal attention framework that leverages the contextual information for utterance-level sentiment prediction. The proposed approach applies attention on multi-modal multi-utterance representations and tries to learn the contributing features amongst them. We evaluate our proposed approach on two multi-modal sentiment analysis benchmark datasets, viz. CMU Multi-modal Opinion-level Sentiment Intensity (CMU-MOSI) corpus and the recently released CMU Multi-modal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) corpus. Evaluation results show the effectiveness of our proposed approach with the accuracies of 82.31% and 79.80% for the MOSI and MOSEI datasets, respectively. These are approximately 2 and 1 points performance improvement over the state-of-the-art models for the datasets.</abstract>
<identifier type="citekey">ghosal-etal-2018-contextual</identifier>
<identifier type="doi">10.18653/v1/D18-1382</identifier>
<location>
<url>https://aclanthology.org/D18-1382/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>3454</start>
<end>3466</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Contextual Inter-modal Attention for Multi-modal Sentiment Analysis
%A Ghosal, Deepanway
%A Akhtar, Md Shad
%A Chauhan, Dushyant
%A Poria, Soujanya
%A Ekbal, Asif
%A Bhattacharyya, Pushpak
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F ghosal-etal-2018-contextual
%X Multi-modal sentiment analysis offers various challenges, one being the effective combination of different input modalities, namely text, visual and acoustic. In this paper, we propose a recurrent neural network based multi-modal attention framework that leverages the contextual information for utterance-level sentiment prediction. The proposed approach applies attention on multi-modal multi-utterance representations and tries to learn the contributing features amongst them. We evaluate our proposed approach on two multi-modal sentiment analysis benchmark datasets, viz. CMU Multi-modal Opinion-level Sentiment Intensity (CMU-MOSI) corpus and the recently released CMU Multi-modal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) corpus. Evaluation results show the effectiveness of our proposed approach with the accuracies of 82.31% and 79.80% for the MOSI and MOSEI datasets, respectively. These are approximately 2 and 1 points performance improvement over the state-of-the-art models for the datasets.
%R 10.18653/v1/D18-1382
%U https://aclanthology.org/D18-1382/
%U https://doi.org/10.18653/v1/D18-1382
%P 3454-3466
Markdown (Informal)
[Contextual Inter-modal Attention for Multi-modal Sentiment Analysis](https://aclanthology.org/D18-1382/) (Ghosal et al., EMNLP 2018)
ACL
- Deepanway Ghosal, Md Shad Akhtar, Dushyant Chauhan, Soujanya Poria, Asif Ekbal, and Pushpak Bhattacharyya. 2018. Contextual Inter-modal Attention for Multi-modal Sentiment Analysis. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3454–3466, Brussels, Belgium. Association for Computational Linguistics.