@inproceedings{carton-etal-2018-extractive,
title = "Extractive Adversarial Networks: High-Recall Explanations for Identifying Personal Attacks in Social Media Posts",
author = "Carton, Samuel and
Mei, Qiaozhu and
Resnick, Paul",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1386",
doi = "10.18653/v1/D18-1386",
pages = "3497--3507",
abstract = "We introduce an adversarial method for producing high-recall explanations of neural text classifier decisions. Building on an existing architecture for extractive explanations via hard attention, we add an adversarial layer which scans the residual of the attention for remaining predictive signal. Motivated by the important domain of detecting personal attacks in social media comments, we additionally demonstrate the importance of manually setting a semantically appropriate {``}default{''} behavior for the model by explicitly manipulating its bias term. We develop a validation set of human-annotated personal attacks to evaluate the impact of these changes.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="carton-etal-2018-extractive">
<titleInfo>
<title>Extractive Adversarial Networks: High-Recall Explanations for Identifying Personal Attacks in Social Media Posts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Carton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiaozhu</namePart>
<namePart type="family">Mei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Resnick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce an adversarial method for producing high-recall explanations of neural text classifier decisions. Building on an existing architecture for extractive explanations via hard attention, we add an adversarial layer which scans the residual of the attention for remaining predictive signal. Motivated by the important domain of detecting personal attacks in social media comments, we additionally demonstrate the importance of manually setting a semantically appropriate “default” behavior for the model by explicitly manipulating its bias term. We develop a validation set of human-annotated personal attacks to evaluate the impact of these changes.</abstract>
<identifier type="citekey">carton-etal-2018-extractive</identifier>
<identifier type="doi">10.18653/v1/D18-1386</identifier>
<location>
<url>https://aclanthology.org/D18-1386</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>3497</start>
<end>3507</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Extractive Adversarial Networks: High-Recall Explanations for Identifying Personal Attacks in Social Media Posts
%A Carton, Samuel
%A Mei, Qiaozhu
%A Resnick, Paul
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F carton-etal-2018-extractive
%X We introduce an adversarial method for producing high-recall explanations of neural text classifier decisions. Building on an existing architecture for extractive explanations via hard attention, we add an adversarial layer which scans the residual of the attention for remaining predictive signal. Motivated by the important domain of detecting personal attacks in social media comments, we additionally demonstrate the importance of manually setting a semantically appropriate “default” behavior for the model by explicitly manipulating its bias term. We develop a validation set of human-annotated personal attacks to evaluate the impact of these changes.
%R 10.18653/v1/D18-1386
%U https://aclanthology.org/D18-1386
%U https://doi.org/10.18653/v1/D18-1386
%P 3497-3507
Markdown (Informal)
[Extractive Adversarial Networks: High-Recall Explanations for Identifying Personal Attacks in Social Media Posts](https://aclanthology.org/D18-1386) (Carton et al., EMNLP 2018)
ACL