@inproceedings{baly-etal-2018-predicting,
title = "Predicting Factuality of Reporting and Bias of News Media Sources",
author = "Baly, Ramy and
Karadzhov, Georgi and
Alexandrov, Dimitar and
Glass, James and
Nakov, Preslav",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1389/",
doi = "10.18653/v1/D18-1389",
pages = "3528--3539",
abstract = "We present a study on predicting the factuality of reporting and bias of news media. While previous work has focused on studying the veracity of claims or documents, here we are interested in characterizing entire news media. This is an under-studied, but arguably important research problem, both in its own right and as a prior for fact-checking systems. We experiment with a large list of news websites and with a rich set of features derived from (i) a sample of articles from the target news media, (ii) its Wikipedia page, (iii) its Twitter account, (iv) the structure of its URL, and (v) information about the Web traffic it attracts. The experimental results show sizable performance gains over the baseline, and reveal the importance of each feature type."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="baly-etal-2018-predicting">
<titleInfo>
<title>Predicting Factuality of Reporting and Bias of News Media Sources</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ramy</namePart>
<namePart type="family">Baly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georgi</namePart>
<namePart type="family">Karadzhov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dimitar</namePart>
<namePart type="family">Alexandrov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Glass</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a study on predicting the factuality of reporting and bias of news media. While previous work has focused on studying the veracity of claims or documents, here we are interested in characterizing entire news media. This is an under-studied, but arguably important research problem, both in its own right and as a prior for fact-checking systems. We experiment with a large list of news websites and with a rich set of features derived from (i) a sample of articles from the target news media, (ii) its Wikipedia page, (iii) its Twitter account, (iv) the structure of its URL, and (v) information about the Web traffic it attracts. The experimental results show sizable performance gains over the baseline, and reveal the importance of each feature type.</abstract>
<identifier type="citekey">baly-etal-2018-predicting</identifier>
<identifier type="doi">10.18653/v1/D18-1389</identifier>
<location>
<url>https://aclanthology.org/D18-1389/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>3528</start>
<end>3539</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predicting Factuality of Reporting and Bias of News Media Sources
%A Baly, Ramy
%A Karadzhov, Georgi
%A Alexandrov, Dimitar
%A Glass, James
%A Nakov, Preslav
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F baly-etal-2018-predicting
%X We present a study on predicting the factuality of reporting and bias of news media. While previous work has focused on studying the veracity of claims or documents, here we are interested in characterizing entire news media. This is an under-studied, but arguably important research problem, both in its own right and as a prior for fact-checking systems. We experiment with a large list of news websites and with a rich set of features derived from (i) a sample of articles from the target news media, (ii) its Wikipedia page, (iii) its Twitter account, (iv) the structure of its URL, and (v) information about the Web traffic it attracts. The experimental results show sizable performance gains over the baseline, and reveal the importance of each feature type.
%R 10.18653/v1/D18-1389
%U https://aclanthology.org/D18-1389/
%U https://doi.org/10.18653/v1/D18-1389
%P 3528-3539
Markdown (Informal)
[Predicting Factuality of Reporting and Bias of News Media Sources](https://aclanthology.org/D18-1389/) (Baly et al., EMNLP 2018)
ACL