@inproceedings{zhao-etal-2018-paragraph,
title = "Paragraph-level Neural Question Generation with Maxout Pointer and Gated Self-attention Networks",
author = "Zhao, Yao and
Ni, Xiaochuan and
Ding, Yuanyuan and
Ke, Qifa",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1424",
doi = "10.18653/v1/D18-1424",
pages = "3901--3910",
abstract = "Question generation, the task of automatically creating questions that can be answered by a certain span of text within a given passage, is important for question-answering and conversational systems in digital assistants such as Alexa, Cortana, Google Assistant and Siri. Recent sequence to sequence neural models have outperformed previous rule-based systems. Existing models mainly focused on using one or two sentences as the input. Long text has posed challenges for sequence to sequence neural models in question generation {--} worse performances were reported if using the whole paragraph (with multiple sentences) as the input. In reality, however, it often requires the whole paragraph as context in order to generate high quality questions. In this paper, we propose a maxout pointer mechanism with gated self-attention encoder to address the challenges of processing long text inputs for question generation. With sentence-level inputs, our model outperforms previous approaches with either sentence-level or paragraph-level inputs. Furthermore, our model can effectively utilize paragraphs as inputs, pushing the state-of-the-art result from 13.9 to 16.3 (BLEU{\_}4).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2018-paragraph">
<titleInfo>
<title>Paragraph-level Neural Question Generation with Maxout Pointer and Gated Self-attention Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yao</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaochuan</namePart>
<namePart type="family">Ni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanyuan</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qifa</namePart>
<namePart type="family">Ke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Question generation, the task of automatically creating questions that can be answered by a certain span of text within a given passage, is important for question-answering and conversational systems in digital assistants such as Alexa, Cortana, Google Assistant and Siri. Recent sequence to sequence neural models have outperformed previous rule-based systems. Existing models mainly focused on using one or two sentences as the input. Long text has posed challenges for sequence to sequence neural models in question generation – worse performances were reported if using the whole paragraph (with multiple sentences) as the input. In reality, however, it often requires the whole paragraph as context in order to generate high quality questions. In this paper, we propose a maxout pointer mechanism with gated self-attention encoder to address the challenges of processing long text inputs for question generation. With sentence-level inputs, our model outperforms previous approaches with either sentence-level or paragraph-level inputs. Furthermore, our model can effectively utilize paragraphs as inputs, pushing the state-of-the-art result from 13.9 to 16.3 (BLEU_4).</abstract>
<identifier type="citekey">zhao-etal-2018-paragraph</identifier>
<identifier type="doi">10.18653/v1/D18-1424</identifier>
<location>
<url>https://aclanthology.org/D18-1424</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>3901</start>
<end>3910</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Paragraph-level Neural Question Generation with Maxout Pointer and Gated Self-attention Networks
%A Zhao, Yao
%A Ni, Xiaochuan
%A Ding, Yuanyuan
%A Ke, Qifa
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F zhao-etal-2018-paragraph
%X Question generation, the task of automatically creating questions that can be answered by a certain span of text within a given passage, is important for question-answering and conversational systems in digital assistants such as Alexa, Cortana, Google Assistant and Siri. Recent sequence to sequence neural models have outperformed previous rule-based systems. Existing models mainly focused on using one or two sentences as the input. Long text has posed challenges for sequence to sequence neural models in question generation – worse performances were reported if using the whole paragraph (with multiple sentences) as the input. In reality, however, it often requires the whole paragraph as context in order to generate high quality questions. In this paper, we propose a maxout pointer mechanism with gated self-attention encoder to address the challenges of processing long text inputs for question generation. With sentence-level inputs, our model outperforms previous approaches with either sentence-level or paragraph-level inputs. Furthermore, our model can effectively utilize paragraphs as inputs, pushing the state-of-the-art result from 13.9 to 16.3 (BLEU_4).
%R 10.18653/v1/D18-1424
%U https://aclanthology.org/D18-1424
%U https://doi.org/10.18653/v1/D18-1424
%P 3901-3910
Markdown (Informal)
[Paragraph-level Neural Question Generation with Maxout Pointer and Gated Self-attention Networks](https://aclanthology.org/D18-1424) (Zhao et al., EMNLP 2018)
ACL