@inproceedings{chen-zhuge-2018-abstractive,
title = "Abstractive Text-Image Summarization Using Multi-Modal Attentional Hierarchical {RNN}",
author = "Chen, Jingqiang and
Zhuge, Hai",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1438/",
doi = "10.18653/v1/D18-1438",
pages = "4046--4056",
abstract = "Rapid growth of multi-modal documents on the Internet makes multi-modal summarization research necessary. Most previous research summarizes texts or images separately. Recent neural summarization research shows the strength of the Encoder-Decoder model in text summarization. This paper proposes an abstractive text-image summarization model using the attentional hierarchical Encoder-Decoder model to summarize a text document and its accompanying images simultaneously, and then to align the sentences and images in summaries. A multi-modal attentional mechanism is proposed to attend original sentences, images, and captions when decoding. The DailyMail dataset is extended by collecting images and captions from the Web. Experiments show our model outperforms the neural abstractive and extractive text summarization methods that do not consider images. In addition, our model can generate informative summaries of images."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-zhuge-2018-abstractive">
<titleInfo>
<title>Abstractive Text-Image Summarization Using Multi-Modal Attentional Hierarchical RNN</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jingqiang</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hai</namePart>
<namePart type="family">Zhuge</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Rapid growth of multi-modal documents on the Internet makes multi-modal summarization research necessary. Most previous research summarizes texts or images separately. Recent neural summarization research shows the strength of the Encoder-Decoder model in text summarization. This paper proposes an abstractive text-image summarization model using the attentional hierarchical Encoder-Decoder model to summarize a text document and its accompanying images simultaneously, and then to align the sentences and images in summaries. A multi-modal attentional mechanism is proposed to attend original sentences, images, and captions when decoding. The DailyMail dataset is extended by collecting images and captions from the Web. Experiments show our model outperforms the neural abstractive and extractive text summarization methods that do not consider images. In addition, our model can generate informative summaries of images.</abstract>
<identifier type="citekey">chen-zhuge-2018-abstractive</identifier>
<identifier type="doi">10.18653/v1/D18-1438</identifier>
<location>
<url>https://aclanthology.org/D18-1438/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>4046</start>
<end>4056</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Abstractive Text-Image Summarization Using Multi-Modal Attentional Hierarchical RNN
%A Chen, Jingqiang
%A Zhuge, Hai
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F chen-zhuge-2018-abstractive
%X Rapid growth of multi-modal documents on the Internet makes multi-modal summarization research necessary. Most previous research summarizes texts or images separately. Recent neural summarization research shows the strength of the Encoder-Decoder model in text summarization. This paper proposes an abstractive text-image summarization model using the attentional hierarchical Encoder-Decoder model to summarize a text document and its accompanying images simultaneously, and then to align the sentences and images in summaries. A multi-modal attentional mechanism is proposed to attend original sentences, images, and captions when decoding. The DailyMail dataset is extended by collecting images and captions from the Web. Experiments show our model outperforms the neural abstractive and extractive text summarization methods that do not consider images. In addition, our model can generate informative summaries of images.
%R 10.18653/v1/D18-1438
%U https://aclanthology.org/D18-1438/
%U https://doi.org/10.18653/v1/D18-1438
%P 4046-4056
Markdown (Informal)
[Abstractive Text-Image Summarization Using Multi-Modal Attentional Hierarchical RNN](https://aclanthology.org/D18-1438/) (Chen & Zhuge, EMNLP 2018)
ACL