@inproceedings{gao-etal-2018-april,
    title = "{APRIL}: Interactively Learning to Summarise by Combining Active Preference Learning and Reinforcement Learning",
    author = "Gao, Yang  and
      Meyer, Christian M.  and
      Gurevych, Iryna",
    editor = "Riloff, Ellen  and
      Chiang, David  and
      Hockenmaier, Julia  and
      Tsujii, Jun{'}ichi",
    booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
    month = oct # "-" # nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D18-1445/",
    doi = "10.18653/v1/D18-1445",
    pages = "4120--4130",
    abstract = "We propose a method to perform automatic document summarisation without using reference summaries. Instead, our method interactively learns from users' preferences. The merit of preference-based interactive summarisation is that preferences are easier for users to provide than reference summaries. Existing preference-based interactive learning methods suffer from high sample complexity, i.e. they need to interact with the oracle for many rounds in order to converge. In this work, we propose a new objective function, which enables us to leverage active learning, preference learning and reinforcement learning techniques in order to reduce the sample complexity. Both simulation and real-user experiments suggest that our method significantly advances the state of the art. Our source code is freely available at \url{https://github.com/UKPLab/emnlp2018-april}."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gao-etal-2018-april">
    <titleInfo>
        <title>APRIL: Interactively Learning to Summarise by Combining Active Preference Learning and Reinforcement Learning</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Yang</namePart>
        <namePart type="family">Gao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Christian</namePart>
        <namePart type="given">M</namePart>
        <namePart type="family">Meyer</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Iryna</namePart>
        <namePart type="family">Gurevych</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-oct-nov</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Ellen</namePart>
            <namePart type="family">Riloff</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">David</namePart>
            <namePart type="family">Chiang</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Julia</namePart>
            <namePart type="family">Hockenmaier</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jun’ichi</namePart>
            <namePart type="family">Tsujii</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Brussels, Belgium</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We propose a method to perform automatic document summarisation without using reference summaries. Instead, our method interactively learns from users’ preferences. The merit of preference-based interactive summarisation is that preferences are easier for users to provide than reference summaries. Existing preference-based interactive learning methods suffer from high sample complexity, i.e. they need to interact with the oracle for many rounds in order to converge. In this work, we propose a new objective function, which enables us to leverage active learning, preference learning and reinforcement learning techniques in order to reduce the sample complexity. Both simulation and real-user experiments suggest that our method significantly advances the state of the art. Our source code is freely available at https://github.com/UKPLab/emnlp2018-april.</abstract>
    <identifier type="citekey">gao-etal-2018-april</identifier>
    <identifier type="doi">10.18653/v1/D18-1445</identifier>
    <location>
        <url>https://aclanthology.org/D18-1445/</url>
    </location>
    <part>
        <date>2018-oct-nov</date>
        <extent unit="page">
            <start>4120</start>
            <end>4130</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T APRIL: Interactively Learning to Summarise by Combining Active Preference Learning and Reinforcement Learning
%A Gao, Yang
%A Meyer, Christian M.
%A Gurevych, Iryna
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F gao-etal-2018-april
%X We propose a method to perform automatic document summarisation without using reference summaries. Instead, our method interactively learns from users’ preferences. The merit of preference-based interactive summarisation is that preferences are easier for users to provide than reference summaries. Existing preference-based interactive learning methods suffer from high sample complexity, i.e. they need to interact with the oracle for many rounds in order to converge. In this work, we propose a new objective function, which enables us to leverage active learning, preference learning and reinforcement learning techniques in order to reduce the sample complexity. Both simulation and real-user experiments suggest that our method significantly advances the state of the art. Our source code is freely available at https://github.com/UKPLab/emnlp2018-april.
%R 10.18653/v1/D18-1445
%U https://aclanthology.org/D18-1445/
%U https://doi.org/10.18653/v1/D18-1445
%P 4120-4130
Markdown (Informal)
[APRIL: Interactively Learning to Summarise by Combining Active Preference Learning and Reinforcement Learning](https://aclanthology.org/D18-1445/) (Gao et al., EMNLP 2018)
ACL